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Abstract. We try to make some contributions in proving the conjecture which P. Borwein
established. In that order, we consider it in the matrix form and notice some wonderful relations.
Also, we concentrate our attention to self-inversive polynomials and conclude that the whole
conjecture can be written by three sequences of self-inversive polynomials. At last, our numerical
evaluating persuade us that a few auxiliary conjectures are true We think that they can be useful
in final proof.
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1. Introduction

Let us denote by

(a; q)0 = 1, (a; q)n =
n−1∏

i=0

(1− aqi)

and

J(n; q) = (q; q3)n (q2; q3)n =
n−1∏

i=0

(1− q3i+1)(1− q3i+2).

For fixed n, J(n; q) is a monotonously decreasing function in the interval [0, 1]
with a unique point of inflection ξ ≈ 0.448527.

Peter Borwein in 1990. made the next conjecture.

Conjecture 1.1. (P. Borwein) The polynomials An(q), Bn(q) and Cn(q) defined
by

J(n; q) = An(q3)− qBn(q3)− q2Cn(q3), (1.1)

have nonnegative coefficients.

Somewhere this conjecture denotes like the property +−−.
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Some similar conjectures are discussed by D.M. Bressoud [3].

Figure 1.a Figure 1.b
The function J(n; q) for n = 7. The coefficients of An(q) (n = 10, 11, 12, 13).

In the paper [2], G.E. Andrews has derived the next recurrence relations

An(q) = (1 + q2n−1)An−1(q) + qnBn−1(q) + qnCn−1(q), A0(q) = 1,

Bn(q) = qn−1An−1(q) + (1 + q2n−1)Bn−1(q)− qnCn−1(q), B0(q) = 0,

Cn(q) = qn−1An−1(q)− qn−1Bn−1(q) + (1 + q2n−1)Cn−1(q), C0(q) = 0.

Notice that

deg An(q) = n2, deg Bn(q) = deg Cn(q) = n2 − 1 (n > 0).

If we write the Andrews’ recurrence relations in the form

An(q)−An−1(q) = qn
{
qn−1An−1(q) + Bn−1(q) + Cn−1(q)

}
,

Bn(q)−Bn−1(q) = qn−1 {An−1(q) + qnBn−1(q)− qCn−1(q)} ,

Cn(q)− Cn−1(q) = qn−1 {An−1(q)−Bn−1(q) + qnCn−1(q)} ,

we see that the polynomials An(q) =
∑n2

j=0 an,jq
j , Bn(q) =

∑n2−1
j=0 bn,jq

j and

Cn(q) =
∑n2−1

j=0 cn,jq
j , have the property

an,i = an−1,i, bn,i = bn−1,i, cn,i = cn−1,i (i = 0, . . . , n− 2).

Moreover an,n−1 = an−1,n−1.
According to Figure 1.b. we can believe that the next is true.
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Conjecture 1.2. The coefficients an,i are increasing functions of index n, i.e.,

an,i ≤ an+1,i (i = 1, 2, . . . , [n2/2]) (n = 1, 2, . . . ).

Starting from n = 7, the sequence {an,i} becomes unimodal, i.e.

an,i−1 ≤ an,i (i = 1, 2, . . . , [n2/2]) (n = 7, 8, . . . ),

The Andrews’ recurrence relations can be written in the next matrix form

Xn(q) = F (n, q)Xn−1 (n = 1, 2, . . . ),

where

Xn(q) =




An(q)
Bn(q)
Cn(q)


 , F (n, q) =




(1 + q2n−1) qn qn

qn−1 (1 + q2n−1) −qn

qn−1 −qn−1 (1 + q2n−1)


 .

It is can be of interest that

det F (n, q) = 1 + (q3)2n−1 − q(q3)n−1 − q2(q3)n−1

has the similar expanding as J(n; q).

Lemma 1.1. The matrices {F (n, q)} are commutative, i.e.

F [k, q]F [n, q] = F [n, q]F [k, q].

Lemma 1.2. The recurrence relations can be written in the form




An qCn qBn

Bn An −qCn

Cn −Bn An


 =




(1 + q2n−1) qn qn

qn−1 (1 + q2n−1) −qn

qn−1 −qn−1 (1 + q2n−1)







An−1 qCn−1 qBn−1

Bn−1 An−1 −qCn−1

Cn−1 −Bn−1 An−1


 .
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Lemma 1.3. The matrix F (n, q) can be decomposed like

F (n, q) = qn−1L + (1 + q2n−1)I + qnLt, where L =




0 0 0
1 0 0
1 −1 0


 ,

and Lt is transpose matrix of L.

Obviously,

L2 =




0 0 0
0 0 0
−1 0 0


 , (Lt)2 = (L2)t Ln = (Lt)n = 0 (n = 3, 4 . . . )

By the mathematical induction, we can prove the next lemma.

Lemma 1.4. It is valid

(LLt)n =




0 0 0
0 f2n−2 f2n−1

0 f2n−1 f2n


 , (LtL)n =




f2n −f2n−1 0
−f2n−1 f2n−2 0

0 0 0


 (n > 0),

where fn are Fibonacci numbers:

f0 = f1 = 1, fn = fn−1 + fn−2 (n = 2, 3, . . . ).

2. Borwein conjecture through eigenvalues

The matrix F (n, q) is of great importance in Borwein conjecture. So, let us
examine it by spectral analysis.

Theorem 2.1. The matrix F (n, q) has the eigenvalues

λ1(n; q) = (1− qn−2/3)(1− qn−1/3)

λ2(n; q) = (1 +
1
2
qn−2/3 +

1
2
qn−1/3 + q2n−1) + i

√
3

2
qn−2/3(1− q1/3)

λ3(n; q) = (1 +
1
2
qn−2/3 +

1
2
qn−1/3 + q2n−1)− i

√
3

2
qn−2/3(1− q1/3)

.

These eigenvalues have the next properties:

J(n; q) =
n∏

k=1

λ1(k; q3),

λ1(n; q3) = λ1(n; q) · λ2(n; q) · λ3(n; q),

λ2(n; q) · λ3(n; q) = (1 + qn−1/3 + q2n−2/3)(1 + qn−2/3 + q2n−4/3).
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Theorem 2.2. The matrix F (n, q) can be decomposed by

F [n, q] = M ·Dn ·M−1,

where the matrix Dn = diag{λ1(n; q), λ2(n; q), λ3(n; q)} and the matrices M and
M−1 do not depend on index n and they are given by

M =



−q2/3 1−i

√
3

2 q2/3 1+i
√

3
2 q2/3

q1/3 − 1+i
√

3
2 q1/3 −1+i

√
3

2 q1/3

1 1 1




M−1 =
1

3q2/3




−1 q1/3 q2/3

1+i
√

3
2

1−i
√

3
2 q1/3 q2/3

1−i
√

3
2 − 1+i

√
3

2 q1/3 q2/3


 .

Theorem 2.3. It is valid

n∏

i=1

F [i, q] = M ·
( n∏

i=1

Di

)
·M−1.

Theorem 2.4. The polynomial An(q) can be expressed by

An(q) =
1
3

{
n∏

k=1

λ1(k; q) +
n∏

k=1

λ2(k; q) +
n∏

k=1

λ3(k; q)

}
.

3. Some reciprocal polynomials in the conjecture

We remind that a polynomial A(q) = anqn + an−1q
n−1 + · · · + a0 is reciprocal

if an−k = ak (k = 0, 1, . . . , n), i.e., A(q) = qnA(1/q).
Yet G.E. Andrews [2] has noticed that

(3.1) Cn(q) = qn2−1Bn(1/q) (n ∈ N),

i.e. that Bn(q) and Cn(q) are inversive to each other. Hence

cn,i = bn,n2−1−i (i = 0, 1 . . . , n2 − 1).
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We can notice some sequences of reciprocal polynomials.
Let us denote by

Dn(q) = Bn(q) + Cn(q), En(q) = Bn(q) + qCn(q).

The polynomials An(q), Dn(q) and En(q) reciprocal, i.e.,

An(q) = qn2
An(1/q), Dn(q) = qn2−1Dn(1/q), En(q) = qn2−1En(1/q).

The sequences {An(q)}, {Dn(q)} and {En(q)} satisfy the next recurrence rela-
tions




An

Dn

En


 =




1 + q2n−1 qn 0
2qn−1 1 + q2n−1 −qn−1

qn−1 + qn −qn 1 + q2n−1







An−1

Dn−1

En−1


 ,




A0

D0

E0


 =




1
0
0


 .

Similarly, introducing reciprocal polynomial

Fn = An + En,

we can prove
The sequences {An(q)}, {Dn(q)} and {Fn(q)} satisfy the next recurrence rela-

tions



An

Dn

Fn


 =




1 + q2n−1 qn 0
3qn−1 1 + q2n−1 −qn−1

qn−1 + qn 0 1 + q2n−1







An−1

Dn−1

Fn−1


 ,




A0

D0

F0


 =




1
0
1


 .

4. The fundamental recurrence relation

It seems to be of great importance to find separate recurrence relations for the
sequences {An(q)}, {Bn(q)} and {Cn(q)}.
Theorem 4.1. The sequences {An(q)}, {Bn(q)} and {Cn(q)} satisfy the same
recurrence relation

Fn+3 =

Fn+2 · (1 + q + q2)(1 + q2n+3)

− Fn+1 · q(1 + q + q2)(1 + q2n+2 + q4n+4)

+ Fn · q3(1− q3n+1)(1− q3n+2),
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with only difference in initial values:

Fn = An(q) : A0 = 1, A1 = 1 + q, A2(q) = 1 + q + 2q2 + q3 + q4,

Fn = Bn(q) : B0 = 0, B1 = 1, B2(q) = 1 + q + q3,

Fn = Cn(q) : C0 = 0, C1 = 1, C2(q) = 1 + q2 + q3,

Fn = Dn(q) : D0 = 0, D1 = 2, D2(q) = 2 + q + q2 + 2q3,

Fn = En(q) : E0 = 0, E1 = 1 + q, E2(q) = 1 + 2q + 2q3 + q4,

Fn = Fn(q) : F0 = 1, F1 = 2 + 2q, F2(q) = 2 + 3q + 2q2 + 3q3 + 2q4.

Proof. The most simple way to find the recurrence relation is from the relations
for the sequences {An(q)}, {Dn(q)} and {Fn(q)} which are given in Theorem 3.3.
From the second relation we have

qn−1Fn−1 = 3qn−1An−1 + (1 + q2n−1)Dn−1 −Dn (n ∈ N).

Now, we can eliminate Fn−1 and Fn from the third relation, i.e. we have

3qnAn − (q2n−1(1 + q) + 3qn(1 + q2n−1))An−1

= Dn+1 − (1 + q)(1 + q2n)Dn−1 + q(1 + q2n−1)2Dn−1.

From the first relation of Theorem 3.3, we have

qnDn−1 = An − (1 + q2n−1)An−1 (n ∈ N).

We use it for Dn−1, Dn and Dn+1 and put in the previous relation. After changing
n → n + 1, we get the wanted difference equation. ¤

The recurrence relation for An(q) can be written in the form

An+3(q) = (1 + q + q2)
{
(1 + q2n+3)An+2(q)− q(1 + q2n+2)2An+1(q)

}

+ q3
{
q2n(1 + q + q2)An+1(q) + (1− q3n+1)(1− q3n+2)An(q)

}
.

Conjecture 4.2. The polynomials

(1 + q2n+3)An+2(q)− q(1 + q2n+2)2An+1(q)

and
q2n(1 + q + q2)An+1(q) + (1− q3n+1)(1− q3n+2)An(q)

are the polynomials with non-negative coefficients.



8

5. The zeros

Let us remind that a polynomial

P (q) = qk − 1 (k ∈ N)

has the zeros
qk,j = exp(i

2π

k
(j − 1)) (j = 1, 2, . . . , k)

which have the property

k∑

j=1

qm
k,j = k δmod(m,k),0 =

{
k, mod(m, k) = 0
0, mod(m, k) 6= 0.

We will denote by sm the sum of m-the powers of all zeros of J(n, q), i.e.

sm =
n−1∑

k=0

(
3k+1∑

j=1

qm
3k+1,j +

3k+2∑

j=1

qm
3k+2,j

)
.

Hence

sm =
N∑

k=0

{(3k + 1) δk′,0 + (3k + 2) δk”,0} , (5.1)

where δk,j is Kronecker delta and

N = min{[m/3], n− 1}, k′ = mod(m, 3k + 1); k” = mod(m, 3k + 2). (5.2)

Generally,
1 ≤ sm ≤ n(3n + 1)/2 (m = 1, 2, . . . ).

If m is a prime number greater than 3n − 1, than sm = 1. Also, s3k = 1 (k =
1, 2, . . . ).

Lemma 5.1. It is valid

s3m = sm (m > 3n).

Proof. Obviously, if mod(m, 3k + 1) = 0, then mod(3m, 3k + 1) = 0, and if
mod(m, 3k + 1) 6= 0, then mod(3m, 3k + 1) 6= 0. Similar conclusion is valid if
we change 3k + 1 by 3k + 2. Hence

δmod(3m,3k+1),0 = δmod(m,3k+1),0, δmod(3m,3k+2),0 = δmod(m,3k+2),0.
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At last, for any m > 3n, in the formula (5.1− 2), the number N is equal n− 1. ¤

Now, the coefficients of the polynomial

J(n, q) = q3n2
+ dn,1q

3n2−1 + · · ·+ dn,3n2−1q + dn,3n2

and the sums sm are connected by Newton’s formulae

sm + dn,1sm−1 + · · ·+ dn,m−1s1 + mdn,m = 0 (m = 1, 2, . . . , 3n2).

wherefrom we get much faster algorithm for evaluating of the coefficients dn,k.

Conjecture 5.1. The sums {sm} and coefficients {dn,i} satisfy the next relation

s3i−2 + s3i−1 ≥ s3i ≤ s3i+1 + s3i+2

|dn,3i−2|+ |dn,3i−1| ≤ dn,3i ≤ |dn,3i+1|+ |dn,3i+2|

(i = 1, 2, . . . , [n2]/2) (n = 1, 2, . . . ).

It can be of interest to examine the zeros of polynomials An(q), Bn(q) and
Cn(q).

Lemma 5.1. The polynomial A2n+1(q) vanishes in the point −1. Moreover, it
can be written in the form

A2n+1(q) = (1 + q)Â2n+1(q),

where Â2n+1(q) is a reciprocal polynomial.

Proof. From recurrence relation for the sequence {An(q)}, taking q = −1, we
obtain A2n+3(−1)= 3A2n+1(−1). How it is A1(−1) = 0, by mathematical induc-
tion, we have A2n+1(−1) = 0 for all n ∈ N. Hence, we can write A2n+1(q) =
(1+ q)Â2n+1(q), where Â2n+1(q) is a polynomial of degree (2n+1)2−1. Knowing
that A2n+1(q) is the reciprocal polynomial,i.e. A2n+1(q) = q(2n+1)2A2n+1(1/q),
by simple change, we have

Â2n+1(q) = q(2n+1)2−1Â2n+1(1/q).¤

Conjecture 5.2. The polynomial Â2n+1(q) has all positive coefficients.
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Lemma 5.2. If the polynomial An(q) vanishes in the point z = Reit then it also
vanishes at the points z = Re−it, z = eit/R and z = e−it/R.

Proof. How An(q) has all real coefficients, it follows that the complex zeros appear
in conjugate pairs. From the fact that An(q) is the reciprocal polynomial we
conclude that, if z = Reit is a zero, then also is 1/z = e−it/R. ¤

Our numerical evaluating persuade us that all zeros of An(q) lie in the ring
1− ε < |z| < 1 + ε, where 0 < ε < 1/2.

Especially, when we consider a zero z = Reit (R 6= 0), according to Lemma 8.2,
we have 4 different zeros and the next product

(z −Reit)(z −Re−it)(z − eit/R)(z − e−it/R)

= z4 − 2
(
R +

1
R

)
cos t · z(1 + z2) +

{(
R +

1
R

)2 + 2 cos(2t)
}

z2 + 1

in the polynomial An(q).
In the case R = 1, this product can be written like (z2 − 2z cos t + 1)2. But,

only one or two zeros appear from this four point set.
Similar behavior we notice for the zeros of Bn(q) and Cn(q).

6. No doubt, the positive sequences

The sequences of polynomials {A+
n (q)}, {B+

n (q)} and {C+
n (q)} derived from the

relation

n∏

i=1

(1 + q3i−2)(1 + q3i−1) = A+
n (q3) + qB+

n (q3) + q2C+
n (q3),

are, no doubt, with positive coefficients.
Remembering the Borwein conjecture

n∏

i=1

(1− q3i−2)(1− q3i−1) = An(q3)− qBn(q3)− q2Cn(q3),

and by multiplying the same sides of equalities, we can prove the next theorem.
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Theorem 6.1. The sequences {An(q)}, {Bn(q)} and {Cn(q)} are connected with
the sequences {A+

n (q)}, {B+
n (q)} and {C+

n (q)}, by the next relations

An(q2) = A+
n (q)An(q)− qC+

n (q)Bn(q)− qB+
n (q)Cn(q),

Bn(q2) = −C+
n (q)An(q) + B+

n (q)Bn(q) + A+
n (q)Cn(q)

qCn(q2) = −B+
n (q)An(q) + A+

n (q)Bn(q) + qC+
n (q)Cn(q).

7. The generating functions and transforms

Denote by

α(z) =
∞∑

n=0

An(q)zn, β(z) =
∞∑

n=0

Bn(q)zn, γ(z) =
∞∑

n=0

Cn(q)zn

the generating functions of the sequences of polynomials included in Borwein con-
jecture.

Theorem 7.1. The generating functions α(z), β(z) and γ(z) satisfy the next
system of the functional equations

z−1
[
α(z)− 1

]
= α(z) + qα(q2z) + qβ(qz) + qγ(qz),

z−1β(z) = α(qz) + β(z) + qβ(q2z)− qγ(qz),

z−1γ(z) = α(qz)− β(qz) + γ(z) + qγ(q2z),

with initial values

α(0) = A0 = 1, β(0) = B0 = 0, γ(0) = C0 = 0.

Using the fundamental recurrence relation, we prove

Theorem 7.2. The generating function α(z) satisfies the next functional equation

q7z3 α(q6z)− (1 + q + q2)
{
(qz)2 α(q4z) + q4z3 α(q3z)− (1− qz)z α(q2z)

}

−q(1−z)(1−qz)(1−q2z) α(z)+q
[
(1−q−2q2−q3+q4+q5)z+1+2(1+q+q2)

]
= 0.

Let us apply Laplace transform on the sequences {An(q)}, {Bn(q)} and {Cn(q)}.
Denote by

L[
An(q)

]
= an(p), L[

Bn(q)
]

= bn(p), L[
Cn(q)

]
= cn(p).

Knowing that

L[
qk

]
=

k!
qk+1

, L[
qkAn(q)

]
= (−1)ka(k)

n (p),

we have
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Theorem 7.3. The Borwein conjecture can be written in the form

an(p) = an−1(p)− a
(2n−1)
n−1 (p) + (−1)nb

(n)
n−1(p) + (−1)nc

(n)
n−1(p),

bn(p) = (−1)n−1a
(n−1)
n−1 (p) + bn−1(p)− b

(2n−1)
n−1 (p)− (−1)nc

(n)
n−1(p),

cn(p) = (−1)n−1a
(n−1)
n−1 (p)− (−1)n−1b

(n−1)
n−1 (p) + cn−1(p)− c

(2n−1)
n−1 (p).

Here, the improvement is in the fact that we find recurrence relations with
constant coefficients.

Also, we can apply the transform q D ln ·, where D is derivative by q. We
yield

q D ln Jn(q) =
3q3A′n(q3)− q

[
Bn(q3) + 3q3B′

n(q3)
]−q2

[
2Cn(q3) + 3q3C ′n(q3)

]

An(q3)− qBn(q3)− q2Cn(q3)
,

i.e., numerator and denominator hold on the property +−−.

8. Some expansions

Introducing two new variables x = q and t = q3 into J(n; q), we can consider a
new function fn(x, t) defined by

fn(x, t) =
n−1∏

i=0

(1− xti)(1− x−1ti+1) (0 < x, t < 1). (8.1)

Expanding (8.1) over powers of x, we have

fn(x, t) =
n∑

k=−n

cn,kxk.

Lemma 8.1. The function f(x, t) has the next properties

fn(tx, t) = fn(x−1, t) =
xtn − 1
x− tn

fn(x, t), fn(x/t, t) =
tn+1 − x

t(1− xtn−1)
fn(x, t).
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Lemma 8.2. The coefficients cn,k satisfy the next relations:

cn,−j = tjcn,j

cn,j = −tj−1 tn−j+1 − 1
tn+j − 1

cn,j−1

(j = −n + 1,−n + 2, . . . , n)

with boundary values

cn,−n = (−1)ntn(n+1)/2 cn,n = (−1)nt(n−1)n/2.

Lemma 8.3. Polynomials An(t), Bn(t) and Cn(t) can be written in the form

An(t) = cn,0 +
[ n
3 ]∑

k=1

cn,3ktk(tk + 1)

Bn(t) = −
[ n−1

3 ]∑

k=1

cn,3k+1t
k(tk + 1)

Cn(t) = −
[ n−2

3 ]∑

k=1

cn,3k+2t
k(tk + 1)

Denote G(n, j, t) = −tj−1 tn−j+1−1
tn+j−1 = − tn−tj−1

tn+j−1 . Rewrite cn,j in form cn,j(q) =∑
cn,j,kqk.

Lemma 8.4. Coefficients cn,j,k satisfies next recurrence relation:

cn,j,k =
[ k−n

n+j ]∑
p=0

cn,j−1,k−n−p(n+j) −
[ k−j+1

n+j ]∑
p=0

cn,j−1,k−j+1−p(n+j)

Proof.

Let us start from cn,j = G(n, j, q)cn,j−1 and cn,j,k =
c
(k)
n,j

(0)

k! . Derivative c
(k)
n,j(q)

we will compute using Leibnitz formula:

c
(k)
n,j(0) =

k∑

i=0

(
k

i

)
G(i)(n, j, 0)c(k−i)

n,j−1(0)



14

For derivatives G(i)(n, j, t) we will also apply Leibnitz formula:

G(i)(n, j, t) = −
i∑

s=0

(
i

s

) (
tn − tj−1

)(s)
(

1
tn+j − 1

)(i−s)

For t = 0 expression
(
tn − tj−1

)(s) vanishes for s 6= j − 1, n. So upper sum can be
rewritten in the form:

G(i)(n, j, 0) =
(

i

j − 1

)
(j−1)!

(
1

tn+j − 1

)(i−j+1)

(0)−
(

i

n

)
n!

(
1

tn+j − 1

)(i−n)

(0)

It can be proven that holds
(

1
tn+j−1

)(s)

(0) = −s! for n + j|s and otherwise it is

0.Using this we can calculate derivative G(i)(n, j, t):

G(i)(n, j, 0) = i! ·
i∑

p=0

(
∆p(n+j),i−j+1 −∆p(n+j),i−n

)

Again, substitution in equation () completes the proof.

Letting n to tends to infinity we get

f∞(x, t) =
∞∏

i=0

(1− xti)(1− x−1ti+1) (0 < x, t < 1),

and the properties

f∞(tx, t) = f∞(x−1, t) =
−1
x

f∞(x, t), f∞(x/t, t) =
−x

t
f∞(x, t).

Writing f∞(x, t) in the form

f∞(x, t) =
∞∏

k=1

1− xk

1− tk
(0 < x, t < 1),

we conclude
f∞(t, x) = f∞(x, t).

At the end of this section we will give some conjectures.
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Conjecture 8.1. Polynomials

cn,3k(q) · qk(qk + 1) + cn,3(k+1)(q) · qk+1(qk+1 + 1)

has positive coefficients for all even k, 2 ≤ k ≤ [n/3].

Conjecture 8.2. Polynomial

3∑

k=0

cn,3k(q) · qk(qk + 1)

has positive coefficients.

Conjecture 8.3. Polynomials cn,j(q) have positive coefficients for even and neg-
ative for odd j.

9. Conjectures for further research

By using package Mathematica, we have done a lot of trials which persuade us
that the next statements are true.

Conjecture 9.1. The polynomial Bn(q) =
∑n2−1

j=0 bn,jq
j has the property

bn,n2−2 = 0, bn,j > 0, j 6= n2 − 2.

Equivalently, knowing Cn(q) = qn2−1Bn(1/q) (n ∈ N), we can establish the
next conjecture.

Conjecture 9.2. The polynomial Cn(q) =
∑n2−1

j=0 cn,jq
j has the property

cn,1 = 0, cn,j > 0, j 6= 1.

Conjecture 9.3. The coefficients of the polynomials An(q)−Bn(q) and An(q)−
qBn(q) are positive.

Conjecture 9.4. The coefficients of the polynomial An(q)− Cn(q) and An(q)−
qCn(q) are positive.
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Conjecture 9.5. The coefficients of the polynomials An(q)− (1+q2n−1)An−1(q),
Bn(q)− (1 + q2n−1)Bn−1(q) and Cn(q)− (1 + q2n−1)Cn−1(q) are positive.
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