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The one-parameter deformed exponential function was introduced as a frame that enchases a few
known functions of this type. Such deformation requires the corresponding deformed operations
(addition and subtraction) and deformed operators (derivative and antiderivative). In this paper,
we will demonstrate this theory in researching of some functions defined by iterated deformed
Laguerre operator. We study their properties, such as representation, orthogonality, generating
function, differential and difference equation, and addition and summation formulas. Also, we
consider these functions by the operational method.

1. Introduction

The several parametric generalizations and deformations of the exponential function have
been proposed recently in different contexts such as nonextensive statistical mechanics [1, 2],
relativistic statistical mechanics [3, 4], and quantum group theory [5–7].

The areas of deformations of the exponential functions have been treated basically
along three (complementary) directions: formal mathematical developments, observation
of consistent concordance with experimental (or natural) behavior, and theoretical physical
developments.

In paper [8], a deformed exponential function of two variables depending on a real
parameter is introduced to express discrete and continual behavior by the same. In this
function, well-known generalizations and deformations can be viewed as the special cases
[1, 5]. Also, its usage can be seen in [9].
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In continuation of our previous considerations of the deformed exponential function,
we will use its convenience to introduce and research a class of functions of two variables
that can be viewed as one-parameter analog of Laguerre polynomials.

The paper is organized as follows. In Section 2, we introduce the deformed exponential
function and the related deformation of variable, addition and subtraction. In Section 3, we
consider some known and new difference and differential operators, convenient for the work
with deformed variables and exponentials. In this environment, in Section 4, we define a
class of two-variable functions, called the deformed Laguerre polynomials, by an iterated
generalized differential operator. Section 5 is devoted to various properties of these functions,
such as orthogonality, summation and addition formulas, differential equations, generating
function. Finally, in Section 6 we prove a few operational identities involving the introduced
deformed Laguerre polynomials.

Because of the presence of “logarithmic scale,” deformed Laguerre operator and de-
formed Laguerre polynomials could be suitable for use in control engineering, population dy-
namics, mathematical modeling of viscous fluids, and oscillating problems in mechanics, like
the usual Laguerre operator and Laguerre polynomials that are already used (see [10–12]).

2. The Deformed Exponential Functions

In this section we will present a deformation of an exponential function of two variables
depending on parameter h ∈ R \ {0}, which is introduced in [8].

Let us define function (x, y) �→ eh(x, y) by

eh
(
x, y
)
= (1 + hx)y/h

(
x ∈ C \

{
− 1
h

}
, y ∈ R

)
. (2.1)

Since

lim
h→ 0

eh
(
x, y
)
= exy, (2.2)

this function can be viewed as a one-parameter deformation of the exponential function of
two variables.

If h = 1 − q (q /= 1) and y = 1, function (2.1) becomes

e1−q(x, 1) =
(
1 +
(
1 − q

)
x
)1/(1−q)

, (2.3)

that is, e1−q(x, 1) = exq , where exq is Tsallis q-exponential function [1] defined by

exq =

⎧
⎨

⎩

(
1 +
(
1 − q

)
x
)1/(1−q)

, 1 +
(
1 − q

)
x > 0

0, otherwise
(x ∈ R). (2.4)

If h = p − 1 (p /= 1) and x = 1, function (2.1) becomes

ep−1
(
1, y
)
= py/(p−1), (2.5)
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that is, a function considered for a generalization of the standard exponential function in the
context of quantum group formalism [13].

Notice that function (2.1) can be written in the form

eh
(
x, y
)
= exp

(
y

h
ln(1 + hx)

)
. (2.6)

Hence, similar to what in [14], we can use cylinder transformation as deformation function
x �→ {x}h by

{x}h =
1
h
ln(1 + hx) = ln (1 + hx)1/h

(
x ∈ C \

{
− 1
h

})
. (2.7)

Thus, the following holds:

eh
(
x, y
)
= e{x}h y. (2.8)

We can show that function (2.1) holds on some basic properties of the exponential
function.

Proposition 2.1. For x ∈ C \ {−1/h} and y, y1, y2 ∈ R, the following holds:

eh
(
x, y
)
> 0

(
x < − 1

h
for h < 0 or x > − 1

h
for h > 0

)
,

eh
(
0, y
)
= eh(x, 0) = 1,

e−h
(
x, y
)
= eh

(−x,−y)
(
x /=

1
h

)
,

eh
(
x, y1 + y2

)
= eh

(
x, y1

)
eh
(
x, y2

)
.

(2.9)

Notice that the additional property is true with respect to the second variable only.
However, with respect to the first variable, the following holds:

eh
(
x1, y

)
eh
(
x2, y

)
= eh

(
x1 + x2 + hx1x2, y

)
. (2.10)

This equality suggests introducing a generalization of the sum operation

x1⊕hx2 = x1 + x2 + hx1x2. (2.11)

Such generalized addition operator was considered in some papers and books (see, e.g., [2]
or [14]). This operation is commutative and associative, and zero is its neutral. For x /= − 1/h,
the �h-inverse exists as

�hx =
−x

1 + hx
, (2.12)
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and x⊕h(�hx) = 0 is valid. Hence, (I,⊕h) is an abelian group, where I = (−∞,−1/h) for h < 0
or I = (−1/h,+∞) for h > 0. In this way, the �h-subtraction can be defined by

x1�hx2 = x1⊕h(�hx2) =
x1 − x2

1 + hx2

(
x2 /= − 1

h

)
. (2.13)

With respect to (2.7), we can prove the next equality for x1, x2 ∈ I:

{x1}h + {x2}h = {x1⊕hx2}h. (2.14)

Proposition 2.2. For x1, x2 ∈ C \ {−1/h} and y ∈ R, the following is valid:

eh
(
x1⊕hx2, y

)
= eh

(
x1, y

)
eh
(
x2, y

)
,

eh
(
x1�hx2, y

)
= eh

(
x1, y

)
eh
(
x2,−y

)
.

(2.15)

In order to find the expansions of the introduced deformed exponential function, we
introduce the generalized backward integer power given by

z(0,h) = 1, z(n,h) =
n−1∏

k=0

(z − kh) (n ∈ N, h ∈ R \ {0}). (2.16)

Proposition 2.3. For function (x, y) �→ eh(x, y), the following representation holds:

eh
(
x, y
)
=

∞∑

n=0

{x}nhyn

n!
, eh

(
x, y
)
=

∞∑

n=0

xny(n,h)

n!
(|hx| < 1). (2.17)

Remark 2.4. Notice that in expressions (2.8) and the first expansion in (2.17) the deformation
of variable x appears, but, contrary to that in the second expansion in (2.17), the deformation
of powers of y is present.

3. The Deformed Operators

Let us recall that the h-difference operator is

Δz,hf(z) =
f(z + h) − f(z)

h
. (3.1)

Proposition 3.1 (see [8]). The function y �→ eh(x, y) is the eigenfunction of difference operatorΔy,h

with eigenvalue x, that is, the following holds:

Δy,h eh
(
x, y
)
= x eh

(
x, y
)
. (3.2)
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Also, there are a few differential operators that have deformed the exponential
function as eigenfunction.

Let us define the deformed h-differential and h-derivative accordingly with operation
(2.11) (see [15]):

dhz = lim
u→ z

z�hu, Dz,hf(z) =
df(z)
dhz

= lim
u→ z

f(z) − f(u)
z�hu

. (3.3)

With respect to (2.13), we have

Dz,hf(z) =
df(z)
dhz

= lim
u→ z

f(z) − f(u)
(z − u)/(1 + hu)

= (1 + hz)
df(z)
dz

. (3.4)

The h-derivative holds on the property of linearity and the product rule:

Dz,h

(
αf(z) + βg(z)

)
= αDz,hf(z) + βDz,hg(z),

Dz,h

(
f(z)g(z)

)
= f(z)Dz,hg(z) + g(z)Dz,hf(z).

(3.5)

Let I = (−∞,−1/h) for h < 0 or I = (−1/h,+∞) for h > 0. For x ∈ I, we define the
inverse operator to operator Dx,h (inverse up to a constant) by

D−1
x,hf(x) =

∫x

0

f(t)
1 + ht

dt. (3.6)

It is easy to prove that

D−n
x,hf(x) =

(
D−1

x,h

)n
f(x) =

1
(n − 1)!

∫x

0

({x}h − {t}h)n−1
1 + ht

f(t)dt. (3.7)

Proposition 3.2. The function eh(x, y) is the eigenfunction of the operators Dx,h and ∂/∂y with
eigenvalues y and {x}h, respectively, that is,

Dx,heh
(
x, y
)
= yeh

(
x, y
)
,

∂

∂y
eh
(
x, y
)
= {x}heh

(
x, y
)
. (3.8)

Moreover, for y /= 0, the following is valid:

D−1
x,heh

(
x, y
)
=

1
y
eh
(
x, y
) − 1

y
. (3.9)

Lemma 3.3. For x ∈ I, y ∈ R, and k, n ∈ N0, the following holds:

Dk
x,h

({x}nh
)
= k!

(
n

k

)

{x}n−kh , (3.10)
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D−k
x,h(1) =

{x}kh
k!

, (3.11)

(
1 − yD−1

x,h

)−1
(1) = eh

(
x, y
)
. (3.12)

Proof. Equalities (3.10) and (3.11) follow from definition (2.7), (3.4), and (3.6). For (3.12), we
recall the expansion (2.17) and the formal geometric series:

eh
(
x, y
)
=

∞∑

n=0

{x}nhyn

n!
=

∞∑

n=0

ynD−n
x,h(1) =

∞∑

n=0

(
yD−1

x,h

)n
(1)

=
(
1 − yD−1

x,h

)−1
(1).

(3.13)

Furthermore, let us introduce a multiplicative operator

Xhf(x) = {x}hf(x). (3.14)

Lemma 3.4. For n ∈ N0, the following holds:

Dx,hX
n
h −XnDx,h = nXn−1

h , Dn
x,hXh −XhD

n
x,h = nDn−1

x,h , (3.15)

XhD
n+1
x,h X

n
h = Dn

x,hX
n+1
h Dx,h. (3.16)

Proof. Using the product rule for Dx,h, we get equalities (3.15) for n = 1:

(Dx,hXh)f(x) = Dx,h

({x}hf(x)
)
= f(x) + {x}hDx,hf(x) = (1 +XhDx,h)f(x). (3.17)

Hence,

XhD
2
x,hXh −Dx,hX

2
hDx,h = XhDx,h(XhDx,h + 1) − (XhDx,h + 1)XhDx,h = 0, (3.18)

which proves equality (3.16) for n = 1. The cases for n > 1 can be proved by induction or by
repeated procedure:

XhD
n+1
x,h X

n
h −Dn

x,hX
n+1
h Dx,h = XhD

n
x,h

(
Dx,hX

n
h

) −
(
Dn

x,hXh

)
Xn

hDx,h

= XhD
n
x,h

(
Xn

hDx,h + nXn−1
h

)
−
(
XhD

n
x,h + nDn−1

x,h

)
Xn

hDx,h

= n
(
XhD

n
x,hX

n−1
h −Dn−1

x,h X
n
hDx,h

)
= · · · = 0.

(3.19)

Theorem 3.5. For n ∈ N0, the following is valid:

(Dx,hXhDx,h)n =
(
Dn

x,hX
n
hD

n
x,h

)
. (3.20)
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Proof. The statement is obviously true for n = 1. Suppose that formula is true for n. According
to Lemma 3.4, we have

(Dx,hXhDx,h)n+1 −Dn+1
x,h X

n+1
h Dn+1

x,h = (Dx,hXhDx,h)(Dx,hXhDx,h)n −Dn+1
x,h X

n+1
h Dn+1

x,h

= (Dx,hXhDx,h)
(
Dn

x,hX
n
hD

n
x,h

)
−Dn+1

x,h X
n+1
h Dn+1

x,h

= Dx,h

(
XhD

n+1
x,h X

n
h −Dn

x,hX
n+1
h Dx,h

)
Dn

x,h = 0.

(3.21)

Now, we are able to generalize the special differential operator (d/dx)x(d/dx), stated
as the Laguerre derivative in [11, 12], which appears in mathematical modelling of phenom-
ena in viscous fluids and the oscillating chain in mechanics. Substituting the ordinary deriva-
tive and variable with the deformed one, we get the deformed Laguerre derivative

(Dx,hXhDx,h)f(x) =
(

d

dhx
{x}h

d

dhx

)
f(x)

= (1 + hx)
d

dx

(
ln (1 + hx)1/h(1 + hx)

df(x)
dx

)
.

(3.22)

Lemma 3.6. For x ∈ I, y ∈ R, and k, n ∈ N0, the following is valid:

(Dx,hXhDx,h)eh
(
x, y
)
= y
(
1 + yXh

)
eh
(
x, y
)
, (3.23)

(Dx,hXhDx,h)k
(

{x}nh
n!

)

= k!

(
n

k

)
{x}n−kh

(n − k)!
. (3.24)

Proof. With respect to Proposition 3.2, equality (3.10), and the product rule for Dx,h, we have

(Dx,hXhDx,h)eh
(
x, y
)
= Dx,h

({x}hyeh
(
x, y
))

= y
(
1 + y{x}h

)
eh
(
x, y
)
, (3.25)

wherefrom we get the operational inscription. The second equality follows from the repeated
application of (3.10).

At last, we refer to the M and P operators as the descending (or lowering) and
ascending (or raising) operators associated with the polynomial set {qn}n∈N0

if

M
(
qn
)
= nqn−1, P

(
qn
)
= qn+1. (3.26)

Then, the polynomial set {qn}n∈N0
is called quasimonomial with respect to the oper-

ators M and P (see [16]).
It is easy to see that Dx,h and Xh are the descending and ascending operators as-

sociated with the set of generalized monomial {x}nh(n ∈ N0). Also, Dx,hXhDx,h and D−1
x,h are

the descending and ascending operators associated with the set of generalized monomial
({x}nh/n!) (n ∈ N0).
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4. The Functional Sequence Induced by
Iterated Deformed Laguerre Derivative

Let h/= 0, I = (−∞,−1/h) for h < 0 or I = (−1/h,+∞) for h > 0 and G = I × R
+. We define

functions (x, y) �→ Ln,h(x, y) for (x, y) ∈ G (n ∈ N0) by the relation

Ln,h

(
x, y
)
=

(−1)n
yn

eh
(
x, y
)
(Dx,hXhDx,h)n

(
eh
(
x,−y)). (4.1)

The first members of the functional sequence {Ln,h(x, y)}n∈N0
are

L0,h
(
x, y
)
= 1,

L1,h
(
x, y
)
= 1 − y ln

(
(1 + hx)1/h

)
= 1 − {x}hy,

L2,h
(
x, y
)
= 2 − 4y{x}h + y2{x}2h.

(4.2)

Lemma 4.1. The function Ln,h(x, y) (n ∈ N0) is the polynomial of degree n in the deformed variable
y{x}h = ln((1 + hx)y/h) = ln eh(x, y).

Proof. Using equality (3.23), we have

(Dx,hXhDx,h)eh
(
x,−y) = y

(
y{x}h − 1

)
eh
(
x,−y). (4.3)

With respect to (3.24), repeating the previous step, we get

(Dx,hXhDx,h)n
(
eh
(
x,−y)) = ynQn

(
y{x}h

)
eh
(
x,−y), (4.4)

where Qn is a monic polynomial of degree n. According to Proposition 2.1, we have

Ln,h

(
x, y
)
= (−1)nQn

(
y{x}h

)
. (4.5)

Theorem 4.2. The functions Ln,h(x, y) satisfy the next relation of orthogonality:

Jn,k =
∫A

0
Ln,h

(
x, y
){x}kheh

(
x,−y − h

)
dx =

(−1)n(n!)2
yn+1

δkn, (4.6)

where k, n ∈ N0, k ≤ n, and

A =

⎧
⎪⎪⎨

⎪⎪⎩

+∞, h > 0,

− 1
h
, h < 0.

(4.7)
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Proof. Substituting Ln,h(x, y) in integral Jn,k, according to Proposition 2.1, we get

Jn,k =
(−1)n
yn

∫A

0
eh
(
x, y
)
(Dx,hXhDx,h)n

(
eh
(
x,−y)){x}kh eh

(
x,−y − h

)
dx

=
(−1)n
yn

∫A

0
(Dx,hXhDx,h)n

(
eh
(
x,−y)){x}kh eh(x,−h)dx.

(4.8)

Since

(Dx,hXhDx,h)n = (Dx,hXhDx,h)(Dx,hXhDx,h)n−1

= (1 + hx)
d

dx
{x}h

d

dhx

(
d

dhx
{x}h

d

dhx

)n−1 (4.9)

and eh(x,−h) = (1 + hx)−1, the integral becomes

Jn,k =
(−1)n
yn

∫A

0

d

dx

(

{x}h
d

dhx

(
d

dhx
{x}h

d

dhx

)n−1(
eh
(
x,−y))

)

{x}kh dx. (4.10)

Applying integration by parts twice and using relation (3.10), we get

Jn,k =
[
{x}k+1h q({x}h)eh

(
x,−y)

]x=A

x=0

+
(−1)n+2

yn
k2
∫A

0

(
d

dhx
{x}h

d

dhx

)n−1(
eh
(
x,−y)){x}k−1h eh(x,−h)dx,

(4.11)

where q is a polynomial. Because of

lim
x↗A

{x}mh eh
(
x,−y) = lim

x↗A

(
ln
(
(1 + hx)1/h

))m

(1 + hx)y/h
= 0 (m ∈ N0), (4.12)

we have

Jn,k =
(−1)n
yn

k2
∫A

0
(Dx,hXhDx,h)n−1

(
eh
(
x,−y)){x}k−1h eh(x,−h)dx. (4.13)

Repeating the procedure k times, we get

Jn,k =
(−1)n
yn

(k!)2
∫A

0
(Dx,hXhDx,h)n−k

(
eh
(
x,−y))eh(x,−h)dx. (4.14)
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If n > k, then the following holds:

Jn,k =
(−1)n
yn

(k!)2
∫A

0

d

dx

(

{x}h
d

dhx

(
d

dhx
{x}h

d

dhx

)n−k−1)(
eh
(
x,−y))dx

=
(−1)n
yn

(k!)2
[

{x}h
d

dhx

(
d

dhx
{x}h

d

dhx

)n−k−1(
eh
(
x,−y))

]x=A

x=0

= 0.

(4.15)

If n = k, then

Jn,n =
(−1)n
yn

(n!)2
∫A

0
eh
(
x,−y)eh(x,−h)dx

=
(−1)n
yn

(n!)2
∫A

0
eh
(
x,−y − h

)
dx =

(−1)n
yn+1

(n!)2.

(4.16)

Notice that the orthogonality relation can be also written in the form

∫A

0
Ln,h

(
x, y
)
lnk(1 + hx)

dx

(1 + hx)y/h+1
=

(−1)n(n!)2hn

yn+1
δkn (k, n ∈ N0, k ≤ n). (4.17)

This orthogonality relation and other properties that will be proven indicate that the
functions Ln,h(x, y) are in close connection with the Laguerre polynomials. That is why we
will call them the deformed Laguerre polynomials.

5. Properties of the Deformed Laguerre Polynomials

Let us recall that the Laguerre polynomials defined by [17]

Ln(x) = ex
dn

dxn

(
xne−x

)
= n!

n∑

k=0

(−1)k
(
n

k

)
xk

k!
(n ∈ N0) (5.1)

satisfy the orthogonality relation

∫∞

0
Ln(x)Lm(x)e−x dx = (n!)2δmn (m,n ∈ N0), (5.2)

the three-term recurrence relations

Ln+1(x) + (x − 2n − 1)Ln(x) + n2Ln−1(x) = 0 (n ∈ N), (5.3)

and the differential equations of second order

xL′′
n(x) + (1 − x)L′

n(x) + nLn(x) = 0 (n ∈ N). (5.4)
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Theorem 5.1. The functions Ln,h(x, y)(n ∈ N0) can be represented by

Ln,h

(
x, y
)
= Ln

(
y{x}h

)
. (5.5)

Proof. Having in mind that Ln,h(x, y) = (−1)nQn(y{x}h), where Qn is a monic polynomial of
degree n, and changing variable x by t = y{x}h in integrals Jn,k for k ≤ n, we have

(n!)2δkn = (−1)nyn+1Jn,k =
∫+∞

0
Qn(t)tke−t dt. (5.6)

It is a well-known orthogonality relation for the Laguerre polynomials. That is why Qn(t) =
cnLn(t), where cn = const. Since Qn is monic and

∫+∞

0
Ln(t)tne−t dt = (−1)n(n!), (5.7)

it must be that cn = (−1)n and therefore Ln,h(x, y) = Ln(t) = Ln(y{x}h).

The next corollaries express two concepts of orthogonality of these functions.

Corollary 5.2. For m,n ∈ N0, the following is valid:

∫A

0
Lm,h

(
x, y
)
Ln,h

(
x, y
)
eh
(
x,−y − h

)
dx =

(n!)2

y
δmn

(
y > 0

)
, (5.8)

where

A =

⎧
⎪⎪⎨

⎪⎪⎩

+∞, h > 0,

− 1
h
, h < 0,

∫+∞

0
Lm,h

(
x, y
)
Ln,h

(
x, y
)
eh
(
x,−y)dy =

(n!)2

{x}h
δmn (x ∈ I \ {0}).

(5.9)

From this close connection of functions Ln,h(x, y)with the Laguerre polynomials, their
properties, as the summation formula, recurrence relation, or differential equation, follow
immediately.

Corollary 5.3. The functions Ln,h(x, y) (n ∈ N0) have the next hypergeometric representation:

Ln,h

(
x, y
)
= n! 1F1

( −n
1

∣∣∣∣∣
y{x}h

)

= n!
n∑

k=0

(−1)k
(
n

k

)
yk{x}kh

k!
. (5.10)
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Corollary 5.4. The function x �→ Ln,h(x, y)(y > 0) is a solution of the differential equation

(1 + hx)2 ln(1 + hx)
d2

dx2 (Z(x)) + (1 + hx)
(
h − (y − h

)
ln(1 + hx)

) d

dx
(Z(x)) + yhnZ(x) = 0,

(5.11)

or, in the other form,

d2

dhx2 (Z(x)) +
(
1 − y{x}h

) d

dhx
(Z(x)) + ynZ(x) = 0. (5.12)

Proof. The first form of equation is obtained from the differential equation of the Laguerre
polynomials and Theorem 5.1. For the second one, it is enough to notice that

d2

dhx2 (Z(x)) =
(
(1 + hx)

d

dx

)2

(Z(x)) = (1 + hx)2Z′′(x) + h(1 + hx)Z′(x). (5.13)

Corollary 5.5. The function y �→ Ln,h(x, y)(x ∈ I) is a solution of the differential equation

d2

dy2

(
Z
(
y
))

+
(
1 − y{x}h

){x}h
d

dy

(
Z
(
y
))

+ n{x}2hZ
(
y
)
= 0. (5.14)

Theorem 5.6. The sequence {Ln,h(x, y)}n∈N0
has the following generating function:

1
1 − t

eh

(
x,− yt

1 − t

)
=

∞∑

n=0

Ln,h

(
x, y
) tn

n!
(x ∈ I, |t| < 1). (5.15)

Proof. Let

Gh

(
x, y, t

)
=

∞∑

n=0

Ln,h

(
x, y
) tn

n!
. (5.16)

Notice that

t
∂

∂t

(Gh

(
x, y, t

))
=

∞∑

n=0

nLn,h

(
x, y
) tn

n!
. (5.17)

According to Theorem 5.1 and recurrence relation (5.3), by summation we get

∞∑

n=0

(
Ln+1,h

(
x, y
)
+
(
y{x}h − 2n − 1

)
Ln,h

(
x, y
)
+ n2Ln−1,h

(
x, y
)) tn

n!
= 0,

∞∑

n=0

Ln+1,h
(
x, y
) tn

n!
+
(
y{x}h − 1

) ∞∑

n=0

Ln,h

(
x, y
) tn

n!

− 2
∞∑

n=0

nLn,h

(
x, y
) tn

n!
+ t

∞∑

n=0
(n + 1)Ln,h

(
x, y
) tn

n!
= 0.

(5.18)
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According to (5.17), we have

(1 − t)2
∂

∂t

(Gh

(
x, y, t

))
+
(
y{x}h − 1 + t

)Gh

(
x, y, t

)
= 0. (5.19)

Solving the obtained differential equation with respect to the initial condition Gh(x, y, 0) =
L0,h(x, y) = 1, we get

Gh

(
x, y, t

)
=

1
1 − t

e−yt{x}h/(1−t) =
1

1 − t
eh

(
x,− yt

1 − t

)
. (5.20)

Theorem 5.7. The functions {Ln,h(x, y)} have the following differential properties:

nyLn−1,h
(
x, y
)
= n

d

dhx

(
Ln−1,h

(
x, y
)) − d

dhx

(
Ln,h

(
x, y
))
, (5.21)

d

dhx

(
Ln+1,h

(
x, y
))

= −(n + 1)!y
n∑

k=0

Lk,h

(
x, y
)

k!
, (5.22)

n{x}hLn,h

(
x, y
)
= n

∂

∂y

(
Ln−1,h

(
x, y
)) − ∂

∂y

(
Ln,h

(
x, y
))
, (5.23)

∂

∂y

(
Ln+1,h

(
x, y
))

= −(n + 1)!{x}h
n∑

k=0

Lk,h

(
x, y
)

k!
. (5.24)

Proof. Applying operator Dx,h = d/dhx to equality (5.15), according to Proposition 3.2, we
get

−yt
(1 − t)2

eh

(
x,− yt

1 − t

)
=

∞∑

n=0

d

dhx

(
Ln,h

(
x, y
)) tn

n!
, (5.25)

that is,

−yt
1 − t

∞∑

n=0

Ln,h

(
x, y
) tn

n!
=

∞∑

n=0

d

dhx

(
Ln,h

(
x, y
)) tn

n!
. (5.26)

Multiplying by 1−t and comparing coefficients, we get equality (5.21). In a similar way, using
operator ∂/∂y, we get equality (5.23). Equalities (5.22) and (5.24) can be obtained comparing
coefficients of powers of t, but using expansion

t

1 − t
=

∞∑

k=0

tk+1. (5.27)
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Theorem 5.8. For functions {Ln,h(x, y)}, the next addition formulas are valid:

Ln,h

(
x1⊕hx2, y

)
=

n∑

k=0

(
n

k

)

Lk,h

(
x1, y

)
Ln−k,h

(
x2, y

)
,

Ln,h

(
x, y1 + y2

)
=

n∑

k=0

(
n

k

)

Ln−k,h
(
x, y1

)(
Lk,h

(
x;y2

) − kLk−1,h
(
x;y2

))
.

(5.28)

Proof. We get the first addition formula from Theorem 5.1, equalities (2.11)–(2.14), and the
addition formula for the Laguerre polynomials [18]:

Ln(x1 + x2) =
n∑

k=0

(
n

k

)

Lk(x1)Ln−k(x2). (5.29)

For the second formula, we consider generating function. According to (5.15) and
Proposition 2.1, we have

Gh

(
x, y1 + y2, t

)
= (1 − t)Gh

(
x, y1, t

)Gh

(
x, y2, t

)
, (5.30)

that is,

∞∑

n=0

Ln,h

(
x, y1 + y2

)

n!
tn = (1 − t)

∞∑

n=0

n∑

k=0

Ln−k,h
(
x, y1

)
Lk,h

(
x, y2

)

(n − k)!k!
tn. (5.31)

Comparing coefficients of tn, we get the required equality.

6. The Deformed Laguerre Polynomials in the Context of
Operational Calculus

In this section, we consider the deformed Laguerre polynomials from the operational aspect
(see [16, 19]). Let us denote

L̂n,h

(
x, y
)
=

1
n!
Ln,h

(
x, y
)
. (6.1)

Theorem 6.1. The polynomials L̂n,h(x, y) have the following operational representations:

L̂n,h

(
x, y
)
=
(
1 − yD−1

x,h

)n
(1), L̂n,h

(
x, y
)
=
(
Dx,h − y

)n
(

{x}nh
n!

)

. (6.2)
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Proof. According to Corollary 5.3 and Lemma 3.3, we have

L̂n,h

(
x, y
)
=

n∑

k=0

(−1)k
(
n

k

)
yk{x}kh

k!
=

n∑

k=0

(−1)k
(
n

k

)

ykD−k
x,h(1)

= (−1)n
n∑

k=0

(
n

k

)

(−1)n−k
(
yD−1

x,h

)k
(1) = (−1)n

(
yD−1

x,h − 1
)n

(1)

=
(
1 − yD−1

x,h

)n
(1).

(6.3)

In a similar way,

(
Dx,h − y

)n
(

{x}nh
n!

)

=
n∑

k=0

(
n

k

)

(−1)n−kyn−kDk
x,h

(
{x}nh
n!

)

=
1
n!

n∑

k=0

(−1)n−k n!
k!(n − k)!

yn−kk!

(
n

k

)

{x}n−kh

=
n∑

k=0

(−1)n−k
(

n

n − k

)
yn−k{x}n−kh

(n − k)!
= L̂n,h

(
x, y
)
.

(6.4)

Theorem 6.2. The polynomial set {L̂n,h(x, y)}n∈N0
is quasimonomial associated to the descending

and ascending operators Mx and Px, respectively:

Mx = 1 − yD−1
x,h, Px = − 1

y
Dx,hXhDx,h. (6.5)

Proof. Using the previous theorem, we show that Mx is the descending operator for
{L̂n,h(x, y)}:

Mx

(
L̂n,h

(
x, y
))

=
(
1 − yD−1

x,h

)(
1 − yD−1

x,h

)n
(1) =

(
1 − yD−1

x,h

)n+1
(1) = L̂n+1,h

(
x, y
)
. (6.6)

Also, Px is the ascending operator because of

Px

(
L̂n,h

(
x, y
))

=
(
− 1
y
Dx,hXhDx,h

)( n∑

k=0

(−1)k
(
n

k

)
yk{x}kh

k!

)

= − 1
y
Dx,h

(
n∑

k=1

(−1)k
(
n

k

)
yk{x}kh
(k − 1)!

)

=
n∑

k=1

(−1)k−1 n!
k!(n − k)!

kyk−1{x}k−1h

(k − 1)!

= n
n−1∑

k=0

(−1)k
(
n − 1

k

)
yk{x}kh

k!
= nL̂n−1,h

(
x, y
)
.

(6.7)
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Theorem 6.3. For L̂n,h(x, y), the following is valid:

L̂n,h

(
x, y
)
= exp

(
− 1
y
Dx,hXhDx,h

)((−y{x}h
)n

n!

)

. (6.8)

Proof. Using the formal expansion of the exponential function and Lemma 3.6, we have

exp
(
− 1
y
Dx,hXhDx,h

)((−y{x}h
)n

n!

)

=
∞∑

k=0

1
k!

(
− 1
y
Dx,hXhDx,h

)k
(

(−1)nyn{x}nh
n!

)

=
∞∑

k=0

(−1)n−k y
n−k

k!
(Dx,hXhDx,h)k

(
{x}nh
n!

)

=
n∑

k=0

(−1)n−k y
n−k

k!
k!

(
n

k

)
{x}n−kh

(n − k)!
=

n∑

k=0

(−1)kyk

(
n

k

)
{x}kh
k!

,

(6.9)

which, according to Corollary 5.3, proves the statement.

Remark 6.4. When h → 0 and y = 1, all properties of functions Ln,h(x, y) give corresponding
ones for the Laguerre polynomials (see, e.g., [12, 19, 20]).
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[17] G. Szegö, Orthogonal Polynomials, American Mathematical Society, Providence, RI, USA, 4th edition,

1975.
[18] Y. B. Cheikh and H. Chaggara, “Connection problems via lowering operators,” Journal of Computa-

tional and Applied Mathematics, vol. 178, no. 1-2, pp. 45–61, 2005.
[19] G. Dattoli, A. Torre, and S. Lorenzutta, “Operational identities and properties of ordinary and gener-

alized special functions,” Journal of Mathematical Analysis and Applications, vol. 236, no. 2, pp. 399–414,
1999.

[20] G. Dattoli, “Operational methods, fractional operators and special polynomials,” Applied Mathematics
and Computation, vol. 141, no. 1, pp. 151–159, 2003.


