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Abstract. In the recent development in various disciplines of physics, it is noted
the need for including the deformed versions of the exponential functions. In last
two decades, the Tsallis and Kaniadakis versions have found a lot of applications.
In this paper, we consider the deformations which have two purposes. First, we
introduce them like beginning of a more general mathematical approach where
the Tsallis and Kaniadakis exponential functions are the special cases. Then,
we wish to pay attention to the mathematical community that they have a
lot of interesting properties from mathematical point of view and possibilities
in applications. Really, we will show the differential and difference properties
of our deformations which are important for the formation and explanation of
continuous and discrete models of numerous phenomena.
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1 Introduction

In last quarter of seventeenth century, solving of the concrete real problems
leaded to the definition of exponential function. New circumstances and chal-
lenges in the twentieth century required its generalizations and deformations.
One–parameter deformations of exponential function have been proposed in the
context of non-extensive statistic mechanics (see [1, 2, 3, 4]) relativistic statis-
tical theory (see, for example, [5, 6]) and quantum–group theory [7].

C. Tsallis introduced an analogue of exponential function [1] in 1988. Af-
terwards, considering a connection between the generalized entropy and theory
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of quantum groups, S. Abe defined in 1997 another deformation in [7], and,
more recently, G. Kaniadakis [5] proposed in 2001 a new one–parameter defor-
mation for the exponential function. These deformations attracted attention of
researchers from various scientific fields because of their successful role in de-
scription of fractal structured systems, non-regular diffusion, thermodynamical
and gravitational–like systems, optimization algorithm, statistical conclusions
and probability theory, several complex systems, etc. (see [2, 8, 9]).

Deformations of the exponential functions are considered in three main (com-
plementary) directions: Formal mathematical developments [1, 2, 5, 6, 10]; ob-
servation of consistent concordance with experimental (or natural) behavior [5];
and theoretical physical developments [7]. A very interesting discussion on jus-
tification for introducing the generalizations of known functions can be found
in [11].

In this paper, using a formal mathematical approach, we introduce two vari-
ants of the deformed exponential function of two variables. The deformations
proposed have differential and difference properties that permit to express dis-
crete and continual behavior by the same (see [12]). In these functions, well–
known generalizations and deformations can be viewed as the special cases.

The paper is organized as follows. After sections devoted to introduction and
preliminaries, we introduce the deformed exponential functions of two variables
in the third and fourth sections. In the following two sections, we examine their
difference and differential properties. We prove that these functions appear as
the eigenfunctions of the difference and differential operators. Finally, in the
last section, we focus on their application in growth models in the population
dynamics and economy.

2 Preliminaries: powers and differences

Let h ∈ R \ {0}. The generalized integer powers of real numbers have an
important role in modern theoretical considerations. In that manner, we first
introduce backward and forward integer power given by

z(0,h) = 1, z(n,h) =

n−1
∏

k=0

(z − kh) (n ∈ N),

z[0,h] = 1, z[n,h] =

n−1
∏

k=0

(z + kh) (n ∈ N).
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The central integer power is defined as

z〈0,h〉 = 1,

z〈n,h〉 =















m−1
∏

k=0

(z − 2kh)(z + 2kh) (n = 2m, m ∈ N),

z
m−1
∏

k=0

(

z − (2k + 1)h
)(

z + (2k + 1)h
)

(n = 2m + 1, m ∈ N0).

For n ∈ N, a relationship with the previously defined generalized powers is given
by

z(n,h) = z[n,−h], z〈n,h〉 = z〈n,−h〉, (1)

and

z〈n,h〉 =

{

z(m,2h) z[m,2h] (n = 2m, m ∈ N),

z (z − h)(m,2h)(z + h)[m,2h] (n = 2m + 1, m ∈ N0),

z〈n,h〉 = z
(

z + (n − 2)h
)(n−1, 2h)

,

z〈2m,h〉z〈2m+1,h〉 = z z(2m,h) z[2m,h].

Consider the h–difference operators

∆z,hf(z) =
f(z + h) − f(z)

h
,

∇z,hf(z) =
f(z) − f(z − h)

h
,

δz,hf(z) =
f(z + h) − f(z − h)

2h
.

Notice that

∇z,hf(z) = ∆z,−hf(z) = ∆z,hf(z − h), δz,−hf(z) = δz,hf(z).

We can prove that their acting on integer generalized powers is given by:

∆z,h z(n,h) = nz(n−1,h), ∇z,h z[n,h] = nz[n−1,h], δz,h z〈n,h〉 = nz〈n−1,h〉. (2)

3 The deformed exponential functions of the

Tsallis type

Let h ∈ R \ {0}. We define a function (x, y) 7→ eh(x, y) by

eh(x, y) = (1 + hx)y/h (x ∈ C \ {−1/h}, y ∈ R). (3)

Since
lim
h→0

eh(x, y) = exy ,
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this function can be viewed as an one–parameter deformation of the exponential
function of two variables.

If h = 1 − q (q 6= 1) and y = 1, the function (3) becomes

e1−q(x, 1) =
(

1 + (1 − q)x
)1/(1−q)

,

i.e., e1−q(x, 1) = ex
q , where ex

q is Tsallis q–exponential function [1] defined by

ex
q =







(

1 + (1 − q)x
)1/(1−q)

, 1 + (1 − q)x > 0 ,

0 , otherwise,

(x ∈ R).

If h = p − 1 (p 6= 1) and x = 1, the function (3) becomes

ep−1(1, y) = py/(p−1),

i.e. function considered for a generalization of the standard exponential function
in the context of quantum group formalism [13].

Remark 3.1 The function eh(x, y) can be viewed as the scaled Tsallis expo-
nential function:

eh(x, y) = ex′

q′ with x′ = xy with q′ = 1 − h/y .

Example 3.1 The function eh(x, y) determines a surface shown in Figure 1.
Bold-emphasized line is ex in the first, and ey in the second part.
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Figure 1: The behavior of eh(x, y) for h = 0.05. The level lines show cases:
a) y =const; b) x =const.

Notice that function (3) can be written in the form

eh(x, y) = exp
( y

h
ln(1 + hx)

)

.
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Hence, we can define a deformation function x 7→ {x}h by

{x}h =
1

h
ln(1 + hx) (x ∈ C \ {−1/h}). (4)

Thus, the following holds:

eh(x, y) = e{x}h y. (5)

We can show that the function (3) holds on some basic properties of exponential
function.

Proposition 3.1 For x ∈ C \ {−1/h} and y ∈ R the following holds:

eh(x, y) > 0 (x < −1/h for h < 0 or x > −1/h for h > 0),

eh(0, y) = eh(x, 0) = 1,

e−h(x, y) = eh(−x,−y) (x 6= 1/h),

eh(x, y1 + y2) = eh(x, y1)eh(x, y2).

Notice that an additional property is true with respect to the second variable
only. However, with respect to the first variable, the following holds:

eh(x1, y)eh(x2, y) = eh

(

x1 + x2 + hx1x2, y
)

.

This equality suggests us to introduce a generalization of the sum operation 1

(see [3], [4])
x1 ⊕h x2 = x1 + x2 + hx1x2 . (6)

This operation is commutative, associative and 0 is its identity. For x 6= −1/h,
the ⊖h– inverse exists as

⊖hx =
−x

1 + hx

and x ⊕h (⊖hx) = 0 is valid. Hence, (I,⊕h) is an Abelian group, where
I = (−∞,−1/h) for h < 0 or I = (−1/h, +∞) for h > 0 (see [14]). In this way,
the ⊖h–subtraction can be defined by

x1 ⊖h x2 = x1 ⊕h (⊖hx2) =
x1 − x2

1 + hx2

(

x2 6= − 1

h

)

. (7)

Due to (4), we can prove the next equality:

{x1}h + {x2}h = {x1 ⊕h x2}h (x1, x2 ∈ I). (8)

Now, we will prove several new properties of the function (3).

Theorem 3.1 For x1, x2 ∈ C \ {−1/h} and y ∈ R, the following is valid:

eh(x1 ⊕h x2, y) = eh(x1, y)eh(x2, y),

eh(x1 ⊖h x2, y) = eh(x1, y)eh(x2,−y).

1Notice that generalized summation was already used in [15, 16, 17] for the analyzing of
functions.
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Proof. The first equality follows immediately from (3) and (6). For the second
one, we can notice the following:

eh(⊖hx, y) = eh

( −x

1 + hx
, y
)

=
(

1 − hx

1 + hx

)y/h

=
1

(1 + hx)y/h
= eh(x,−y). �

The convenience of new notation can be seen in the next example. Using
it, we will express in an elegant way the deformation of the special number
sequence.

Example 3.2 Let us consider the generating function

eh(Φ, t) − eh(−Φ−1, t)

{Φ}h − {−Φ−1}h
=

∞
∑

n=0

Fh,n
tn

n!

(

Φ =
1 +

√
5

2

)

.

We call {Fh,n} the h-Fibonacci numbers. They have the following explicit form
and limits:

Fh,n =
{Φ}n

h − {−Φ−1}n
h

{Φ}h − {−Φ−1}h
, lim

n→∞
Fh,n = Fn, lim

n→∞

Fh,n

Fh,n−1
= {Φ}h.

The next recurrence relation is valid

Fh,n+2 = {1 − h}hFh,n+1 −
(

{Φ}h · {−Φ−1}h

)

Fh,n (n ∈ N).

For above, the property (8) is used: {Φ}h + {−Φ−1}h = {1 − h}h.

4 The deformed exponential functions of Kani-

adakis type

Let us define a function (x, y) 7→ exph(x, y) by

exph(x, y) =
(

hx +
√

1 + h2x2
)y/h

(x ∈ C, y ∈ R). (9)

Since
lim
h→0

exph(x, y) = exy,

this function can be viewed as an one–parameter deformation of the exponential
function with two variables.

If h = κ and y = 1, the function (9) becomes κ–exponential function

expκ(x, 1) = exp{κ}(x) =
(

√

1 + κ2x2 + κx
)1/κ

,

introduced by Kaniadakis in [5, 6].

Remark 4.1 The function exph(x, y) can be viewed as a scaled Kaniadakis
exponential:

exph(x, y) = expκ′(x′) with x′ = xy and κ′ = h/y.
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Figure 2: The behavior of exph(x, y) for h = 0.05. The level lines show cases:
a) y =const; b) x =const.

Example 4.1 The surface determined by exph(x, y) for very small h is shown
on Figure 2. The bold–emphasized curve is ex in the first, and ey in the second
part of the figure.

The relationhip between functions (3) and (9) is given by

exph(x, y) = eh

(

x − 1 −
√

1 + h2x2

h
, y
)

.

Since
arcsinh(hx) = ln(hx +

√

1 + h2x2), (10)

(9) can be written in the form

exph(x, y) = exp
( y

h
arcsinhhx

)

.

In [6], the deformation function x 7→ {x}h was defined by

{x}h =
1

h
arcsinhhx (x ∈ C). (11)

Now, function (9) can be written as

exph(x, y) = e{x}hy. (12)

We adduce the main properties of the introduced deformed exponential func-
tion without the proof.

Proposition 4.1 For x ∈ C and y ∈ R the following holds:

exph(x, y) > 0 (x ∈ R),

exph(0, y) = exph(x, 0) = 1,

exp−h(x, y) = exph(x, y),

exph(x, y1 + y2) = exph(x, y1) exph(x, y2).
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This function holds on additional property with respect to the second variable
only. However, according to (10) we have:

exph(x1, y) exph(x2, y) = exph

(

x1

√

1 + h2x2
2 + x2

√

1 + h2x2
1, y
)

.

This suggests that we introduce another generalization of sum operation (see
[5]):

x1 ⊕h x2 = x1

√

1 + h2x2
2 + x2

√

1 + h2x2
1 . (13)

The operation ⊕h– sum is commutative, associative, its identity is 0 and ⊕h–
inverse for x ∈ R is −x. Thus, (R,⊕h) is an Abelian group, and ⊖h– subtraction
can be defined by

x1 ⊖h x2 = x1 ⊕h (−x2) = x1

√

1 + h2x2
2 − x2

√

1 + h2x2
1 . (14)

Related to (11), we can prove the next equality:

{x1}h + {x2}h = {x1 ⊕h x2}h.

With respect to the operation ⊕h, the function (9) has the following properties:

Theorem 4.1 For x1, x2 ∈ C and y ∈ R, the following is valid:

exph(x1 ⊕h x2, y) = exph(x1, y) exph(x2, y),

exph(x1 ⊖h x2, y) = exph(x1, y) exph(−x2, y) = exph(x1, y) exph(x2,−y).

Example 4.2 Starting from the generating function

exph(Φ, t) − exph(−Φ−1, t)

{Φ}h − {−Φ−1}h
=

∞
∑

n=0

Fibh,n
tn

n!

(

Φ =
1 +

√
5

2

)

,

we can get the other class of the h-Fibonacci numbers, {Fibh,n}. For this se-
quence the following is valid:

Fibh,n =

(

{Φ}h
)n −

(

{−Φ−1}h
)n

{Φ}h + {Φ−1}h
, lim

n→∞
Fibh,n = Fn, lim

n→∞

Fibh,n

Fibh,n−1
= {Φ}h,

Fibh,n+2 =
(

{Φ}h − {Φ−1}h
)

Fibh,n+1 +
(

{Φ}h · {Φ−1}h
)

Fibh,n (n ∈ N).

5 Expansions and difference properties of de-

formed exponential functions

In this section we consider the expansions of the introduced deformed exponen-
tial functions. Related to these expansions, we show that functions eh(x, y) and
e−h(x, y) are eigenfunctions of the operators ∆y,h and ∇y,h with the eigenvalue
x. Likewise the function exph(x, y) is an eigenfunction of operator δy,h with
eigenvalue x.
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Theorem 5.1 For functions (x, y) 7→ eh(x, y) and (x, y) 7→ e−h(x, y), the fol-

lowing representations hold respectively:

eh(x, y) =

∞
∑

n=0

1

n!
xny(n,h) (|hx| < 1), (15)

e−h(x, y) =

∞
∑

n=0

1

n!
xny[n,h] (|hx| < 1). (16)

Proof. With respect to well–known expansion

(1 + z)α =
∞
∑

n=0

(

α

n

)

zn (|z| < 1, α ∈ R),

and the relation
(

z/h

n

)

=
z(z − h) · · ·

(

z − (n − 1)h
)

hn n!
=

z(n,h)

hn n!
,

the following holds:

(1 + hx)y/h =

∞
∑

n=0

(

y/h

n

)

hnxn =

∞
∑

n=0

y(n,h)

hn n!
hnxn (|hx| < 1).

Hence, we get the required expansion (15) for eh(x, y). Using (1), we obtain the
expansion (16) for e−h(x, y). �

Theorem 5.2 The functions y 7→ eh(x, y) and y 7→ e−h(x, y) are the eigen-

functions of operators ∆y,h and ∇y,h respectively, with the eigenvalue x.

Proof. The statement follows from (2) and the expansion (15). Hence, the
function f(y) = eh(x, y) satisfies the difference equation

∆y,h f(y) = x f(y).

In a similar way, using (2) and (16), we can show that f(y) = e−h(x, y) satisfies
the difference equation

∇y,h f(y) = x f(y) . �

Theorem 5.3 The function y 7→ exph(x, y) is an eigenfunction of operator δy,h

with eigenvalue x.

Proof. For function exph(x, y) the following is valid:

δy,h exph(x, y) =
1

2h

(

(

hx +
√

1 + h2x2
)(y+h)/h −

(

hx +
√

1 + h2x2
)(y−h)/h

)

=

(

hx +
√

1 + h2x2
)

y
h
−1

2h

(

(

hx +
√

1 + h2x2
)2 − 1

)

= x exph(x, y) .
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Therefore, function f(y) = exph(x, y) satisfies difference equation

δy,hf(y) = xf(y). �

Theorem 5.4 The function (x, y) 7→ exph(x, y) can be represented as

exph(x, y) =

∞
∑

n=0

1

n!
xny〈n,h〉 (17)

Proof. Consider the expansion of function (9) in the form

exph(x, y) =

∞
∑

n=0

cn(y, h)

n!
xn.

Inasmuch as
δy,h exph(x, y) = x exph(x, y),

it follows

δy,h

∞
∑

n=0

cn(y, h)

n!
xn =

∞
∑

n=0

δy,hcn(y, h)

n!
xn

=

∞
∑

n=0

cn(y, h)

n!
xn+1 =

∞
∑

n=1

cn−1(y, h)

(n − 1)!
xn.

Therefore the coefficients have to be

δy,hc0(y) = 0, δy,hcn(y, h) = ncn−1(y, h),

wherefrom, according to (2), we yield:

cn(y, h) = y〈n,h〉 (n ∈ N0). �

Remark 5.1 Notice that in expressions (5) and (12) the deformations of vari-
able x appear, but, contrary to that in expansions (15) and (17), the deforma-
tions of the powers of y are present.

6 Differential properties of deformed exponen-

tial functions

In this section we will look for differential operators which have deformed ex-
ponential functions as eigenfunctions.

In [5], the deformed h–differential and h–derivative were defined accordingly
to operation (14):

dhz = lim
u→z

z ⊖h u,

df(z)

dhz
= lim

u→z

f(z) − f(u)

z ⊖h u
=
√

1 + h2z2
df(z)

dz
.
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In this sense we can define deformed h–differential and h–derivative accord-
ingly with operation (7) (see [4]):

dhz = lim
u→z

z ⊖h u,

df(z)

dhz
= lim

u→z

f(z) − f(u)

z ⊖h u
= (1 + hz)

df(z)

dz
.

Theorem 6.1 The function x 7→ eh(x, y) is an eigenfunction of operator
d

dhx
with eigenvalue y.

Proof. Let us apply differential operator
∂

∂x
to function eh(x, y). Firstly, we

have

∂

∂x
eh(x, y) = y(1 + hx)y/h−1 =

y

1 + hx
(1 + hx)y/h =

y

1 + hx
eh(x, y),

wherefrom we obtain

(1 + hx)
∂

∂x
eh(x, y) = y eh(x, y),

i.e.,
d

dhx
eh(x, y) = y eh(x, y). �

Theorem 6.2 The function x 7→ exph(x, y) is an eigenfunction of operator
d

dhx
with eigenvalue y.

Proof. If we apply differential operator
∂

∂x
on function exph(x, y), we obtain

∂

∂x
exph(x, y) =

y

h

(

hx +
√

1 + h2x2
)

y

h
−1
(

h +
h2x√

1 + h2x2

)

=
y√

1 + h2x2

(

hx +
√

1 + h2x2
)

y

h

=
y√

1 + h2x2
exph(x, y),

i.e.,
(

√

1 + h2x2
∂

∂x

)

exph(x, y) = y exph(x, y).

Hence,
d

dhx
exph(x, y) = y exph(x, y). �

Finally, let us consider the behavior of deformed exponential functions re-
lated to differentiation over the second variable. In certain sense, we can con-
clude that they are ”deformed” eigenfunctions of operator ∂/∂y. Namely, the
following is valid:

∂

∂y
eh(x, y) = {x}h eh(x, y),

∂

∂y
exph(x, y) = {x}h exph(x, y).
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7 Applications

In this section, we will note the presence and potential of deformed exponentials
in growth models in the frameworks of population dynamics and compound
interest in economy.

Firstly, in population dynamics, let us consider the number N(t) of popula-
tion individuals at the time t with initial value N(0) = N0. The model assumes
that the increment of population in time period δt is proportional to N(t), i.e.
the next difference equation is satisfied

∆t,δtN(t) = rN(t), (18)

where r is called the intrinsic growth rate. According to the Theorem 5.2,
the function t 7→ eδt(r, t) is an eigenfunction of difference operator ∆t,δt with
eigenvalue r. Hence, the solution of equation (18) can be expressed by the
deformed exponential function in the form

N(t) = N0eδt(r, t) = N0(1 + rδt)t/δt. (19)

When δt → 0, we get the Malthus model in population dynamics described by
equation

d

dt
N(t) = rN(t), N(0) = N0,

whose solution is N(t) = N0e
rt.

In [18] and [19], the equation

d

dt
t
d

dt
N(t) = rN(t), N(0) = N0, N ′(0) = N1 = rN0,

which describes the L–Malthus model, is discussed. In this case, the population
growth increases according to the function N(t) = N0e1(rt), where

ek(x) =
∞
∑

n=0

xn

(n!)k+1
(k = 0, 1, . . .).

Thus, the relevant increase is slower with respect to the classical Malthus model.
Consider a deformed h–Malthus model described by the equation

d

dht
N(t) = rN(t), N(0) = N0.

According to Theorem 6.1, its solution is

N(t) = N0eh(t, r) = N0(1 + ht)r/h.

With an appropriate choice of the constant h > 0, we can obtain an arbitrary
level of the population growth increase. Similarly, the second deformed h–
Malthus model can be described by equation

d

dht
N(t) = rN(t), N(0) = N0,
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and its solution

N(t) = N0 exph(t, r) = N0

(

ht +
√

1 + h2t2
)r/h

.

Example 7.1 Comparison of the functions which appear in the Malthus, L–
Malthus, and h–Malthus models with r = 0.022, N0 = 3346 ∗ 109 and h =
0.003(0.003)0.024 is shown on Figure 3. Here, the upper bold-emphasized func-
tion is N(t) = N0e

rt and the lower is N(t) = N0e1(rt).
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Figure 3: The Malthus, L–Malthus and h–Malthus models:
a) N(t) = N0eh(t, r); b) N(t) = N0 exph(t, r).

Using the same model as in (18) in the area of economy, we can express the
well-known law of compound interest by the deformed exponential function as

A(t) = P
(

1 +
r

n

)nt

= Pe1/n(r, t),

where A(t) is the final amount, P is the principal amount (initial investment),
r is the annual nominal interest rate, n is the number of times the interest is
compounded per year and t is the number of years.
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[3] L. Nivanen, A. Le Méhauté, Q.A. Wang, Generalized algebra within

a nonextensive statistics, Rep. Math. Phys. 52 (2003) 437–444.

13



[4] E. Borges, A possible deformed algebra and calculus inspired in nonex-

tensive thermostatics, Physica A 340 (2004) 95–101.

[5] G. Kaniadakis, Non–linear kinetics underlying generalized statistics,
Physica A 296 (2001) 405–425.

[6] G. Kaniadakis, Statistical mechanics in the context of special relativity,
Physical review E, 66 (2002) 1–17.

[7] S. Abe, Nonextensive statistical mechanics of q–bosons based on the q–
deformed entropy, Physics Letters A 224 (1998) 229–236.

[8] G. Kaniadakis, Maximum entropy principle and power-law tailed distri-

butions, The European Physical J. B 70 No 3 (2009) 3–13.

[9] M.E.J. Newman, Power laws, Pareto distributions and Zipf’s law, Con-
temporary Phys. 46 (2005) 323–351.

[10] S. Abe, A.K. Rajagopal, A. Plastino, V. Latora, A. Rapisarda,

A. Robledo, Revisiting Disorder and Tsallis Statistics, Science 300 (2003)
249–251.

[11] A. Qadir, The generalization of special functions, Applied Mathematics
and Computation 187 (2007) 395-402.
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