
Comptes rendus de l’Académie Bulgare des Sciences

Submitted by corresponding author: Predrag Rajković
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1 Introduction

The fractional differential equations based on the Caputo fractional derivative require
initial conditions for integer order derivatives. This is an important advantage in
comparison to the approach based on Riemann-Liouville fractional derivatives in the
starting point. Such type of equations are used in describing various phenomena in the
science, especially in physics, chemistry, control theory and material science, because
of their ability to describe memory effects, see for example [7, 4].

The discrete versions of continuous type problems in science can be made from the
point of view of the so-called q–calculus, [3, 2, 1]. The Caputo q–fractional derivative
has been introduced on the base of the fractional q–integral and fractional q–derivative,
always with the lower limit of integration equal to 0. However, in some considerations,
such as solving of q–differential equation of fractional order with initial values at a
nonzero point, it is of interest to allow that the lower limit of integration is variable. In
our papers [8] and [10], we have succeeded to generalize the theory, especially in that
direction.

As a continuation, our purpose is to define the fractional q–derivative of Caputo
type based on the fractional q–integrals with the parametric lower limit of integration.

∗This work was supported by Ministry of Science, Technology and Development of Republic Serbia,
through the project No 144023 and No 144013.
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2 Preliminaries

In the theory of the q–calculus (see [5]), for a real parameter q ∈ R+ \ {1}, a q–real
number [a]q is introduced as

[a]q :=
1− qa

1− q
(a ∈ R) .

The q–analog of the Pochhammer symbol (the q–shifted factorial) is defined by:

(a; q)0 = 1, (a; q)∞ =
∞∏

i=0

(1− aqi), (a; q)α =
(a; q)∞

(aqα; q)∞
(α ∈ R) , (1)

and the q–gamma function – by

Γq(x) = (q; q)x−1(1− q)1−x
(
x ∈ R \ {0,−1,−2, . . .}) . (2)

Obviously, Γq(x + 1) = [x]qΓq(x).
The q–exponential functions (see [5]) can be written as power series or, applying

the q–form of the Taylor theorem (see [8]), by

eq(x) =
∞∑

n=0

xn

(q; q)n
= eq(a)

∞∑
n=0

xn(a/x; q)n

(q; q)n
(|x| < 1) , (3)

Eq(x) =
∞∑

n=0

q(
n
2)

(q; q)n
xn = Eq(a)

∞∑
n=0

q(
n
2)

(−a; q)n

xn(a/x; q)n

(q; q)n
. (4)

The q–derivative of a function f(x) is defined by

(
Dqf

)
(x) =

f(x)− f(qx)
x− qx

(x 6= 0) ,
(
Dqf

)
(0) = lim

x→0

(
Dqf

)
(x) ,

and the q–derivatives of higher order:

D0
qf = f , Dn

q f = Dq

(
Dn−1

q f
)

(n = 1, 2, 3, . . .) . (5)

The q-integral is defined by

(
Iq,0f

)
(x) =

∫ x

0

f(t) dqt = x(1− q)
∞∑

k=0

f(xqk) qk (0 ≤ |q| < 1), (6)

and (
Iq,af

)
(x) =

∫ x

a

f(t) dqt =
∫ x

0

f(t) dqt−
∫ a

0

f(t) dqt. (7)

In the case of q-derivative, we can define the operator In
q,a as

I0
q,af = f, In

q,af = Iq,a

(
In−1
q,a f

)
(n = 1, 2, 3, . . .) .
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For the q–integral and q–derivative operators the following relations are valid:
(
Dn

q In
q,af

)
(x) = f(x) (n ∈ N) , (8)

(
In
q,aDn

q f
)
(x) = f(x)−

n−1∑

k=0

(
Dk

q f
)
(a)

[k]q!
xk(a/x; q)k (n ∈ N) . (9)

In all further considerations, we assume that the functions are defined in an interval
(0, b) (b > 0), and a ∈ (0, b) is an arbitrary fixed point. Also, the required q–derivatives
and q–integrals exist and the convergence of the series mentioned in the proofs is
assumed.
Definition 1. The fractional q–integral of order α is

(
Iα
q,af

)
(x) =

xα−1

Γq(α)

∫ x

a

(qt/x; q)α−1 f(t) dqt (a < x; α ∈ R+) . (10)

The fractional q–integral (10) can be written in the equivalent form

(
Iα
q,af

)
(x) =

∫ x

a

f(t) dqwα(x, t) (α ∈ R+) , (11)

where wα(x, t) is the function defined by

wα(x, t) =
1

Γq(α + 1)
(
xα − xα(t/x; q)α

)
(α ∈ R+) . (12)

For any α ∈ R+, the following relation is true (see [8]):

(
Iα
q,af

)
(x) =

(
Iα+1
q,a Dqf

)
(x) +

f(a)
Γq(α + 1)

xα(a/x; q)α (a < x) . (13)

The q–fractional integration has the following semigroup property (see [8]):
(
Iβ
q,aIα

q,af
)
(x) =

(
Iα+β
q,a f

)
(x) (a < x; α, β ∈ R+) . (14)

For α ∈ R+ \ N, λ ∈ (−1,∞), we have the following formula:

Iα
q,a

(
xλ(a/x; q)λ

)
=

Γq(λ + 1)
Γq(λ + 1 + α)

xλ+α(a/x; q)λ+α (a < x) . (15)

On the basis of the fractional q–integral, we can define the q–derivative of real order
in the following way.
Definition 2. The fractional q–derivative of order α ∈ R+ in the Riemann–Liouville
sense is understood as

(
Dα

q,af
)
(x) =

(
Ddαe

q Idαe−α
q,a f

)
(x), (16)

where dαe denotes the smallest integer greater or equal to α. For α ≤ 0, it reduces to
the fractional q–integral, i.e.

(
Dα

q,af
)
(x) =

(
I−α
q,a f

)
(x).
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Notice that
(
Dα

q,af
)
(x) has subscript a to emphasize that it depends on the lower

limit of integration used in definition (16). Since dαe is a positive integer for α ∈ R+,
then for

(
D
dαe
q f

)
(x) we apply definition (5).

For a < x and α ∈ R+ \ N, the following identity holds (see [10]):
(
DqD

α
q,af

)
(x) =

(
Dα+1

q,a f
)
(x) , (17)

(
Dα

q,aDqf
)
(x) =

(
Dα+1

q,a f
)
(x)− f(a)

Γq(−α)
x−α−1(a/x; q)−α−1 . (18)

Also, the fractional q-derivative in Riemann-Liouville sense is the left and the right
inverse of fractional q-integral, i.e.,

(
Iα
q,aDα

q,af
)
(x) =

(
Dα

q,aIα
q,af

)
(x) = f(x) (a < x; α ∈ R+ \ N) . (19)

Remark. Since the semigroup property is not valid for the fractional q–derivatives,
Mansour [6] defined the sequential fractional q–derivative

Dα
q f = Dα

q,0f, Dkα
q f = Dα

q,0D(k−1)α
q f, k = 2, 3, . . . .

and investigated the sequential fractional q–differential equations.

3 The fractional q–derivative in Caputo sense

Beside already introduced types of fractional q–derivatives, we will define one more.
Like in standard fractional calculus, we will introduce fractional q–derivative of Caputo
type. This one is very suitable for problems with initial values for derivatives of integer
order.
Definition 3. The Caputo fractional q-derivative of order α ∈ R+ is defined as

(
?D

α
q,af

)
(x) =

(
Idαe−α
q,a Ddαe

q f
)
(x), (20)

where dαe denotes the smallest integer greater or equal to α. For α ≤ 0, it reduces to
the fractional q–integral, i.e.

(
?D

α
q,af

)
(x) =

(
I−α
q,a f

)
(x).

Example 1. According to (15), for λ > dαe − 1, we have

?D
α
q,a

(
xλ(a/x; q)λ

)
= Idαe−α

q,a Ddαe
q

(
xλ(a/x; q)λ

)

= Idαe−α
q,a

( Γq(λ + 1)
Γq(λ− dαe+ 1)

xλ−dαe(a/x; q)λ−dαe
)

=
Γq(λ + 1)

Γq(λ− dαe+ 1)
Γq(λ− dαe+ 1)
Γq(λ− α + 1)

xλ−α(a/x; q)λ−α

=
Γq(λ + 1)

Γq(λ− α + 1)
xλ−α(a/x; q)λ−α.

Notice that for n ∈ N and α > n the following holds:

?D
α
q,a

(
xn(a/x; q)n

)
= Idαe−α

q,a Ddαe
q

(
xn(a/x; q)n

)
= 0 .
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Example 2. For α ∈ R+ \ N and 0 < a < x < 1, the following is valid:

?D
α
q,a(eq(x)) = (1− q)−α eq(a)

∞∑

n=dαe

xn−α(a/x; q)n−α

(q; q)n−α
,

?D
α
q,a

(
Eq(x)

)
=

Eq(a)
(1− q)α

∞∑

n=dαe

q(
n
2)

(−a; q)n

xn−α(a/x; q)n−α

(q; q)n−α
.

Theorem 1 For α ∈ R+ \ N and a < x, the following relations are valid:
(
?D

α
q,aDqf

)
(x) =

(
?D

α+1
q,a f

)
(x),

(
Dq ?D

α
q,af

)
(x) =

(
?D

α+1
q,a f

)
(x) +

(
D
dαe
q f

)
(a)

Γq(dαe − α)
xdαe−α−1(a/x; q)dαe−α−1 .

Proof. If α = n + ε, n ∈ N0, 0 < ε < 1, then dαe = n + 1, dα + 1e = n + 2. The first
equality is valid because

(?D
α+1
q,a f)(x) =

(
Idα+1e−(α+1)
q,a Ddα+1e

q f
)
(x) =

(
I1−ε
q,a Dn+2

q f
)
(x)

=
(
I1−ε
q,a Dn+1

q Dqf
)
(x) =

(
Idαe−α
q,a Ddαe

q Dqf
)
(x)

= (?D
α
q,aDqf)(x) .

For the second equality, according to (13), we have
(
Dq ?D

α
q,af

)
(x) =

(
DqI

1−ε
q,a Dn+1

q f
)
(x)

=
(
DqI

2−ε
q,a Dn+2

q f
)
(x) +

(
Dn+1

q f
)
(a)

Γq(2− ε)
Dq

(
x1−ε(a/x; q)1−ε

)

=
(
?D

α+1
q,a f

)
(x) +

Dn+1
q f(a)

Γq(n + 1− α)
xn−α(a/x; q)n−α . ¤

Remark. From the previous theorem, we conclude that the semigroup property for
fractional q–derivative of Caputo type is not valid, i.e., in general

(
?D

α
q,a?D

β
q,af

)
(x) 6= (

?D
α+β
q,a f

)
(x) .

4 The relations between fractional q–operators

The connection between the two types of the fractional q–derivatives is very important
and it is established in the next theorem.

Theorem 2 Let α ∈ R+ \N and a < x. The connection between the Caputo type and
the Riemann-Liouville type fractional derivatives is as follows:

(
Dα

q,af
)
(x) =

(
?D

α
q,af

)
(x) +

dαe−1∑

k=0

(Dk
q f)(a)

Γq(1 + k − α)
xk−α(a/x; q)k−α
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Proof. Any α ∈ R+ \ N can be written in the form α = n + ε, where ε ∈ (0, 1). We
will prove the statement by mathematical induction over n ∈ N0.

At first, let n = 0, i.e., α ∈ (0, 1). According to (13), we have

(
I1−α
q,a f

)
(x) =

(
I2−α
q,a Dqf

)
(x) +

f(a)
Γq(2− α)

x1−α(a/x; q)1−α

=
(
Iq,a

(
?D

α
q,af

))
(x) +

f(a)
Γq(2− α)

x1−α(a/x; q)1−α .

By q–deriving, we get
(
DqI

1−α
q,a f

)
(x) =

(
DqIq,a

(
?D

α
q,af

))
(x) +

f(a)
Γq(2− α)

Dq

(
x1−α(a/x; q)1−α

)
,

and, finally,
(
Dα

q f
)
(x) =

(
?D

α
q,af

)
(x) +

f(a)
Γq(1− α)

x−α(a/x; q)−α .

Suppose that the statement is valid for a real α = n+ε, ε ∈ (0, 1), for a positive integer
n ∈ N and let us prove that it is valid for α = n + 1 + ε. Indeed, according to (17), the
next equality is valid: (

Dα
q,af

)
(x) =

(
DqD

n+ε
q,a f

)
(x).

With respect to the inductional assumption

(
Dn+ε

q,a f
)
(x) =

(
?D

n+ε
q,a f

)
(x) +

n∑

k=0

(Dk
q f)(a)

Γq(1 + k − n− ε)
xk−n−ε(a/x; q)k−n−ε,

we can write(
Dα

q,af
)
(x)

=
(
Dq ?D

n+ε
q,a f

)
(x) +

n∑

k=0

(Dk
q f)(a)

Γq(1 + k − n− ε)
Dq

(
xk−n−ε(a/x; q)k−n−ε

)

=
(
Dq ?D

n+ε
q,a f

)
(x) +

n∑

k=0

(Dk
q f)(a)

Γq(k − n− ε)
xk−n−1−ε(a/x; q)k−n−1−ε .

Using Theorem 1, we obtain

(
Dq ?D

n+ε
q,a f

)
(x) =

(
?D

n+1+ε
q,a f

)
(x) +

(
Dn+1

q f
)
(a)

Γq(1− ε)
x−ε(a/x; q)−ε .

Finally,

(
Dα

q,af
)
(x) =

(
?D

n+1+ε
q,a f

)
(x) +

(
Dn+1

q f
)
(a)

Γq(1− ε)
x−ε(a/x; q)−ε

+
n∑

k=0

(Dk
q f)(a)

Γq(k − n− ε)
xk−n−1−ε(a/x; q)k−n−1−ε

=
(
?D

α
q,af

)
(x) +

n+1∑

k=0

(Dk
q f)(a)

Γq(k − n− ε)
xk−n−1−ε(a/x; q)k−n−1−ε .¤
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Here, we will discuss the behavior of compositions of the previously defined operators.

Theorem 3 Let α ∈ R+ \ N. Then, for a < x, the following is valid:

(
Iα
q,a ?D

α
q,af

)
(x) = f(x)−

dαe−1∑

k=0

(
Dk

q f
)
(a)

[k]q!
xk(a/x; q)k .

Proof. With respect to the property (14) and the formulas (8) and (9), we have
(
Iα
q,a ?D

α
q,af

)
(x) =

(
Iα
q,aIdαe−α

q,a Ddαe
q f

)
(x) =

(
Idαeq,a Ddαe

q f
)
(x)

= f(x)−
dαe−1∑

k=0

(
Dk

q f
)
(a)

[k]q!
xk(a/x; q)k . ¤

Theorem 4 Let α ∈ R+ \ N and a < x. Then the next relation is true:
(
?D

α
q,aIα

q,af
)
(x) = f(x) .

Proof. Putting f 7→ Iα
q,af into Theorem 2, and using (19), we get

(
?D

α
q,aIα

q,af
)
(x) =

(
Dα

q,aIα
q,af

)
(x)−

dαe−1∑

k=0

(Dk
q Iα

q,af)(a)
Γq(1 + k − α)

xk−α(a/x; q)k−α

= f(x)−
dαe−1∑

k=0

(Iα−k
q,a f)(a)

Γq(1 + k − α)
xk−α(a/x; q)k−α = f(x) . ¤

In similar way, by using Theorem 2 and relation (19), the next properties can be proven.

Theorem 5 Let α ∈ R+ \ N and β ∈ R+. Then, for a < x, the following is valid:
(
?D

α
q,aIβ

q,af
)
(x)

=
(
?D

α−β
q,a f

)
(x) +

dα−βe−1∑

k=0

(
Dk

q f
)
(a)

Γq(k − α + β + 1)
xk−α+β(a/x; q)k−α+β ,

(
Iβ
q,a ?D

α
q,af

)
(x)

=
(
?D

α−β
q,a f

)
(x)−

dαe−1∑

k=dα−βe

(
Dk

q f
)
(a)

Γq(k − α + β + 1)
xk−α+β(a/x; q)k−α+β .
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