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1. Introduction

The integral inequalities can be used for the study of qualitative and quantitative properties of integrals (see [1–3]). In
order to generalize and spread the existing inequalities, we specify two ways to overcome the problems which ensue from
the general definition of q-integral. The first one is the restriction of the q-integral over [a, b] to a finite sum (see [4]). The
second one is indicated in [5] and it means introduction the definition of the q-integral of the Riemann type. At the start
sections, we give all definitions of the q-integrals, their correlations and properties. In the other sections, we elaborate the
q-analogues of the well-known inequalities in the integral calculus, as Chebyshev, Grüss, Hermite–Hadamard for all the
types of the q-integrals. At last, we give a few new inequalities which are valid only for some types of the q-integrals.

In the fundamental books about q-calculus (for example, see [6,7]), the q-integral of the function f over the interval [0, b]
is defined by

Iq(f ; 0, b) =

∫ b

0
f (x)dqx = b(1 − q)

∞∑
n=0

f (bqn)qn (0 < q < 1). (1)

If f is integrable over [0, b], then

lim
q↗1

Iq(f ; 0, b) =

∫ b

0
f (x) dx = I(f ; 0, b).

Generally accepted definition for q-integral over an interval [a, b] is

Iq(f ; a, b) =

∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx −

∫ a

0
f (x)dqx (0 < q < 1). (2)
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The values of such defined q-integrals of the polynomials have very similar form to those in the standard integral calculus.
So, for example, we have∫ b

a
xndqx =

bn+1
− an+1

[n + 1]q
, where [n]q =

1 − qn

1 − q
(n ∈ N).

2. The q-integrals and correlations

Let a, b and q be some real numbers such that 0 < a < b and q ∈ (0, 1).
Beside the q-integrals defined by (1) and (2) we will consider two other types of the q-integrals.
In the paper [4], Gauchman has introduced the restricted q-integral

Gq(f ; a, b) =

∫ b

a
f (x) dG

qx = b(1 − q)
n−1∑
k=0

f (bqk)qk (a = bqn). (3)

Let us notice that lower bound of integral is a = bqn, i.e. it is tied by chosen b, q and positive integer n.
In the paper [5], we have introduced Riemann-type q-integral by

Rq(f ; a, b) =

∫ b

a
f (t) dR

qt = (b − a)(1 − q)
∞∑
k=0

f
(
a + (b − a)qk

)
qk. (4)

This definition includes only point inside the interval of the integration.
The different types of the q-integral defined by (1)–(4) can be denoted in the unique way by Jq( · ; a(J), b), where J can be

G, I or R. Interval of the integration E(J) = [a(J), b] of q-integral Jq( · ; a(J), b) depends on its type:
a(G) = bqn, n ∈ N, for Gq(·; a, b);
a(I) = 0, for Iq(·; 0, b);
a(I) ∈ [0, b], for Iq(·; a, b);
a(R) ∈ [0, b], for Rq(·; a, b).
We can say that a real function f is q-integrable on [0, b] or [a, b] if the series in (1) and (2) converge. In the similar way,

we say that f is qR-integrable on [a, b] if the series in (4) converges.
From now on, it will be assumed that the function f is q-integrable on [0, b] (qR-integrable on [a, b]) whenever Iq(f ; 0, b)

or Iq(f ; a, b) (Rq(f ; a, b)) appears in the formula.
In this research it is convenient to define the operatorŝ : f 7→ f̂ , f̂ (x) = f (a + (b − a)x) ,˜ : f 7→ f̃ , f̃ (x) = bf (bx) − af (ax),

˘ : f 7→ f̆ , f̆ (x) = f (bx) − f (ax),
such that associate the functions defined on [0, 1] to the function defined on [a, b]. Notice that, for x ∈ [0, 1], the following
is valid:

(̂fg)(x) = f̂ (x) ĝ(x), (̃fg)(x) =
1

b − a

(̃
f (x)̃g(x) − ab f̆ (x)ğ(x)

)
. (5)

The correlations between the q-integrals defined by (1)–(4) are given in the following lemma.

Lemma 2.1. If the real function f is q-integrable on [0, b] or qR-integrable on [a, b] (0 < a < b), then the following equalities
hold:

Iq(f ; 0, b) = lim
n→∞

Gq(f ; bqn, b), (6)

Iq(f ; a, b) = Iq(̃f ; 0, 1), (7)

Rq(f ; a, b) = (b − a)Iq(̂f ; 0, 1), (8)

Proof. Since Gq(f ; bqn, b)(n ∈ N) is the partial sum of the series Iq(f ; 0, b), the relation (6) is evident.
The equalities (7) and (8) are valid because of

Iq(f ; a, b) = (1 − q)
∞∑
k=0

(
bf (bqk) − af (aqk)

)
qk = Iq(̃f ; 0, 1)

and

Rq(f ; a, b) = (b − a)(1 − q)
∞∑
k=0

f (a + (b − a)qk)qk = (b − a)Iq(̂f ; 0, 1). �
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The mentioned connections can be used to derive the inequalities for all types of the q-integrals. By (6), the inequalities
for the infinite sum Iq(f ; 0, b) can be derived in the limit process from this ones for Gq(f ; a, b)which are defined by the finite
sum. Using (7) and (8), the integrals Iq(f ; a, b) and Rq(f ; a, b) can be considered as the q-integrals over [0, 1]. Nevertheless,
the results for Iq(f ; a, b) are quite rough because the points outside of the interval of integration (i.e. points on [0, a]) are
included.

According to (5) and Lemma 2.1, the following integral relations are valid:

Rq(fg; a, b) = (b − a)Iq
(
(̂fg); 0, 1

)
= (b − a)Iq

(̂
f ĝ; 0, 1

)
, (9)

Iq(fg; a, b) = Iq
(
(̃fg); 0, 1

)
=

1
b − a

(
Iq
(̃
f g̃; 0, 1

)
− ab Iq

(
f̆ ğ; 0, 1

))
. (10)

3. q-Chebyshev inequality

In this sectionwe give the q-analogues of Chebyshev inequality for themonotonic functions (see [1, p. 239]). The discrete
case of this inequality is used in [4] for the restricted q-integrals. We derive its variants for the rest of the q-integrals.

The function f : [a, b] → R is called q-increasing (q-decreasing) on [a, b] if f (qx) ≤ f (x) (f (qx) ≥ f (x)) whenever
x, qx ∈ [a, b]. It is easy to see that if the function f is increasing (decreasing), then it is q-increasing (q-decreasing) too.

Theorem 3.1. Let f , g : E(J) → R be two real functions, both q-decreasing or both q-increasing. If Jq(·; a(J), b) is the q-integral
defined by (1), (3) or (4), it holds

Jq(fg; a(J), b) ≥
1

b − a(J)
Jq(f ; a(J), b)Jq(g; a(J), b).

Proof. For Jq(·; a(J), b) = Gq(·; a, b), a = bqn, the inequality is proven in [4]. So, the inequalities

Gq(fg; bqn, b) ≥
1

b − bqn
Gq(f ; bqn, b) Gq(g; bqn, b)

are valid for all n = 1, 2, . . .. When n → ∞, using (6) we get the desired inequality for Jq(·; a(J), b) = Iq(·; 0, b). In the
case Jq(·; a(J), b) = Rq(·; a, b), from the q-monotonicity of the functions f and g on [a, b] follows the q-monotonicity of the
functions f̂ and ĝ on [0, 1]. Hence, we have

Iq(̂f ĝ; 0, 1) ≥ Iq(̂f ; 0, 1) Iq(̂g; 0, 1).

According to (7) and (8) we get the required inequality. �

The Chebyshev inequality in the source form is not valid for Iq(·; a, b), where 0 < a < b.

Example 3.1. For f (x) = x3 and g(x) = x4 on the interval [1, 2] we have

Iq(x3 · x4; 1, 2) − Iq(x3; 1, 2)Iq(x4; 1, 2) = 255
1 − q
1 − q8

− 465
(1 − q)2

(1 − q4)(1 − q5)
,

wherefrom we conclude that the inequality holds only for q > 1/2, but it has opposite sign for q < 1/2.

Lemma 3.2. Let the function f : [0, b] → R be increasing and 0 < a < b. If there exist two positive constants l and L such that
a2/b2 ≤ l/L and for every x, y ∈ [0, b] the inequality

l ≤
f (x) − f (y)

x − y
≤ L

is valid, then the function f̃ : [0, 1] → R is increasing too.

Proof. Under the conditions of the Lemma, for every 0 ≤ x < y ≤ bwe have

l(y − x) ≤ f (y) − f (x) ≤ L(y − x).

Then it holds

f̃ (y) − f̃ (x) = b (f (by) − f (bx)) − a (f (ay) − f (ax))
≥ (b2l − a2L)(y − x) ≥ 0. �
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Theorem 3.3. Let f , g : [0, b] → R be two real increasing functions. If there exist the constants lf , Lf , lg and Lg such that
a2/b2 ≤ lf /Lf , a2/b2 ≤ lg/Lg and

lf ≤
f (x) − f (y)

x − y
≤ Lf , lg ≤

g(x) − g(y)
x − y

≤ Lg

holds, then the inequalities are valid:

(a) Iq(fg; a, b) ≥
1

b − a
Iq(f ; a, b)Iq(g; a, b) −

ab(b − a)
[3]q

Lf Lg

(b) Iq(fg; a, b) ≥
1

b − a
Iq(f ; a, b)Iq(g; a, b) −

ab
b − a

(f (b) − f (0)) (g(b) − g(0)) .

Proof. Suppose that f and g are both increasing on [0, b]. Then, according to Lemma 3.2, f̃ and g̃ are both increasing and
hence q-increasing on [0, 1]. With respect to (10) we can write

Iq(fg; a, b) =
1

b − a

(
Iq(̃f g̃; 0, 1) − ab Iq(f̆ ğ; 0, 1)

)
.

Using Theorem 3.1, we have

Iq(̃f g̃; 0, 1) ≥ Iq(̃f ; 0, 1)Iq(̃g; 0, 1),

wherefrom

Iq(fg; a, b) ≥
1

b − a

(
Iq(f ; a, b)Iq(g; a, b) − abIq(f̆ ğ; 0, 1)

)
. (11)

(a) Under the conditions satisfied by the functions f and g on [0, b], it holds

Iq(f̆ ğ; 0, 1) = (1 − q)
∞∑
k=0

(
f (bqk) − f (aqk)

) (
g(bqk) − g(aqk)

)
qk

≤ (1 − q)
∞∑
k=0

Lf Lg(bqk − aqk)2qk = Lf Lg(b − a)2
1 − q
1 − q3

.

Substituting this estimation in (11), we get the first inequality.
(b) Since the functions f and g are increasing on [0, b], it holds

Iq(f̆ ğ; 0, 1) ≤ (1 − q) (f (b) − f (0)) (g(b) − g(0))
∞∑
k=0

qk = (f (b) − f (0)) (g(b) − g(0)) ,

what with (11) gives the second inequality. �

4. q-Grüss inequality

The Grüss inequality (see [1, p. 296]) can be understood as conversion of Chebyshev one.

Theorem 4.1. Let f , g : E(J) → R be two real functions, such that m ≤ f (x) ≤ M, ϕ ≤ g(x) ≤ Φ on E(J), where m,M, ϕ, Φ

are given real constants. If Jq(·; a(J), b) is the q-integral defined by (1), (3) or (4), the following holds:∣∣∣∣∣ 1
b − a(J)

Jq(fg; a(J), b) −
1(

b − a(J)
)2 Jq(f ; a(J), b)Jq(g; a(J), b)

∣∣∣∣∣ ≤
1
4
(M − m)(Φ − ϕ).

Proof. For the restricted q-integrals Gq(·; bqn, b), the inequality is proven in [4]. So, for any arbitrary positive integer n, the
inequality∣∣∣∣ 1

b − bqn
Gq(fg; bqn, b) −

1
(b − bqn)2

Gq(f ; bqn, b) Gq(g; bqn, b)
∣∣∣∣ ≤

1
4
(M − m)(Φ − ϕ)

is valid. When n → ∞, we get the required inequality for Iq(·; 0, b) via (6). Finally, providing the conditions of the theorem,
the functions f̂ and ĝ are bounded on [0, 1] by the constantsm,M, ϕ, Φ respective. Then,∣∣Iq(̂f ĝ; 0, 1) − Iq(̂f ; 0, 1) Iq(̂g; 0, 1)

∣∣ ≤
1
4
(M − m)(Φ − ϕ)

holds and using the relation (8), we get the inequality for Rq(·; a, b). �
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Example 4.1. For f (x) = x and g(x) = x2 on the interval [1, 2] we have

Iq(x · x2; 1, 2) − Iq(x; 1, 2)Iq(x2; 1, 2) = (1 − 2q)
3(2 − q)

(1 + q)(1 + q2)(1 + q + q2)
.

Including the boundaries of the functions f (x) and g(x), we can see that the formula of Grüss inequality will not be hold on
for q ∈ (0, 1/3).

Theorem 4.2. Let f , g : [0, b] → R be two bounded such that m ≤ f (x) ≤ M, ϕ ≤ g(x) ≤ Φ on [0, b], where m,M, ϕ, Φ are
given real constants. Then the following holds:∣∣∣∣ 1

b − a
Iq(fg; a, b) −

1
(b − a)2

Iq(f ; a, b)Iq(g; a, b)
∣∣∣∣ ≤

1
4
(M − m)(Φ − ϕ)

(
1 +

4ab
(b − a)2

)
.

Proof. Having in mind the boundaries of f and g on [0, b], we have

bm − aM ≤ f̃ (x) ≤ bM − am, bϕ − aΦ ≤ g̃(x) ≤ bΦ − aϕ,

where f̃ and g̃ are the function defined on [0, 1]. According to Theorem 4.1, we have∣∣Iq(̃f g̃; 0, 1) − Iq(̃f ; 0, 1) Iq(̃g; 0, 1)
∣∣ ≤

1
4
(bM − am − bm + aM)(bΦ − aϕ − bϕ + aΦ).

By using (10), we obtain∣∣∣(b − a)Iq(fg; a, b) − Iq(f ; a, b)Iq(g; a, b) |−ab| Iq(f̆ ğ; 0, 1)
∣∣∣

≤

∣∣∣(b − a)Iq(fg; a, b) − Iq(f ; a, b)Iq(g; a, b) + ab Iq(f̆ ğ; 0, 1)
∣∣∣

≤
1
4
(b − a)2(M − m)(Φ − ϕ).

With respect to the boundaries of f and g on [0, b], the estimation∣∣∣Iq(f̆ ğ; 0, 1)
∣∣∣ ≤ (M − m)(Φ − ϕ)

holds, what, finally, proves the statement. �

5. q-Hermite–Hadamard inequality

The Hermite–Hadamard inequality (see [1, p. 10]) is related to the Jensen inequality for the convex function. In [4] there
is proved a variant of its analogue for the restricted q-integrals. Here we will formulate and prove another variant of the
q-Hermite–Hadamard inequality for the restricted q-integrals and for the other types of q-integrals.

Theorem 5.1. Let f : [a, b] → R(a = bqn) be a convex function. Then the following holds:

f
(
a + b
[2]q

)
≤

1
b − a

Gq(f ; a, b) ≤
1

[2]q

(
q f
(
a
q

)
+ f (b)

)
.

Proof. According to the definition of the restricted q-integral, we have

1
b − a

Gq(f ; a, b) =
1 − q
1 − qn

n−1∑
k=0

f (bqk)qk =

(
n−1∑
k=0

qk
)−1 (n−1∑

k=0

f (bqk)qk
)

.

If we assign

x =

(
n−1∑
k=0

qk
)−1 (n−1∑

k=0

bqk qk
)

=
b(1 + qn)
1 + q

=
a + b
1 + q

and apply Jensen inequality for the convex functions on the last term, we obtain

1
b − a

Gq(f ; a, b) ≥ f (x) = f
(
a + b
1 + q

)
.



Author's personal copy

S. Marinković et al. / Computers and Mathematics with Applications 56 (2008) 2490–2498 2495

On the other side, using a variant of the reverse Jensen inequality (see [1, p. 9]), we get

1
b − a

Gq(f ; a, b) ≤
b − x

b − bqn−1
f (bqn−1) +

x − bqn−1

b − bqn−1
f (b)

=

(
b −

a
q

)−1 ((
b −

a + b
1 + q

)
f
(
a
q

)
+

(
a + b
1 + q

−
a
q

)
f (b)

)
=

1
1 + q

(
q f
(
a
q

)
+ f (b)

)
. �

Theorem 5.2. Let f : [0, b] → R be a continuous convex function. Then,

f
(

b
[2]q

)
≤

1
b
Iq(f ; 0, b) ≤

1
[2]q

(q f (0) + f (b)) .

Proof. Since the function f satisfies the conditions of Theorem 5.1 on the intervals [bqn, b] for every n ∈ N, the inequalities

f
(
bqn + b

[2]q

)
≤

1
b − bqn

Gq(f ; bqn, b) ≤
1

[2]q

(
qf
(
bqn

q

)
+ f (b)

)
are valid. When n → ∞, we obtain the desired inequality because f is continuous and (6) is satisfied. �

Theorem 5.3. Let f : [a, b] → R be a continuous convex function. Then,

f
(
aq + b
[2]q

)
≤

1
b − a

Rq(f ; a, b) ≤
1

[2]q
(qf (a) + f (b)) .

Proof. Under the conditions which are satisfied by the function f on [a, b], the function f̂ (x) = f (a + (b − a)x) satisfies
the conditions of the Theorem 5.2 on [0, 1]. Hence

f̂
(

1
[2]q

)
≤ Iq(̂f ; 0, 1) ≤

1
[2]q

(
q f̂ (0) + f̂ (1)

)
.

According to (9) and the continuity of the function f , we get the desired inequality. �

Let us remember that the function f is convex on [0, b] if for all x, y ∈ [0, b] and p1 + p2 > 0

f
(
p1x + p2y
p1 + p2

)
≤

p1f (x) + p2f (y)
p1 + p2

holds. The convexity of the function f̃ on [0, 1] is due to the existence of the appropriate constants l and L such that the
condition

l ≤
p1f (x) + p2f (y)

p1 + p2
− f

(
p1x + p2y
p1 + p2

)
≤ L (12)

is satisfied.

Lemma 5.4. Let the function f : [0, b] → R be convex. If there exist two positive constants l and L such that bl ≥ aL and for
every x, y ∈ [0, b] and p1 + p2 > 0 the condition (12) is satisfied, then the function f̃ : [0, 1] → R is convex too.

Proof. Under the conditions of the Lemma, for every 0 ≤ x, y ≤ b and p1 + p2 > 0 we have

p1̃f (x) + p2̃f (y)
p1 + p2

− f̃
(
p1x + p2y
p1 + p2

)
= b

(
p1f (bx) + p2f (by)

p1 + p2
− f

(
p1bx + p2by

p1 + p2

))
− a

(
p1f (ax) + p2f (ay)

p1 + p2
− f

(
p1ax + p2ay

p1 + p2

))
≥ bl − aL ≥ 0. �

Theorem 5.5. Let f : [0, b] → R be a continuous and convex function. If there exist two positive constants l and L such that
bl ≥ aL and for every x, y ∈ [0, b], p1 + p2 > 0 the condition (12) is satisfied, then the following holds:

bf
(

b
[2]q

)
− af

(
a

[2]q

)
≤ Iq(f ; a, b) ≤

(b − a)qf (0) + bf (b) − af (a)
[2]q

. (13)
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Proof. According to Lemma 5.4, the function f̃ is convex on [0, 1]. Then, using Theorem 5.2, we have

f̃
(

1
[2]q

)
≤ Iq(̃f ; 0, 1) ≤

1
[2]q

(
q f̃ (0) + f̃ (1)

)
.

Applying the relation (7) we get the statement. �

Corollary 5.6. Let f : [0, a + b] → R be a continuous and convex function. If there exist two positive constants l and L such
that bl ≥ aL and for every x, y ∈ [0, a + b], p1 + p2 > 0 the condition (12) is satisfied, then the following holds:

l + f
(
a + b
[2]q

)
≤

1
b − a

Iq(f ; a, b) ≤
1

[2]q
(qf (0) + f (a + b) + L) .

Proof. Let p1 = b/(b− a), p2 = −a/(b− a). Applying the condition (12) with x = b/(1+ q), y = a/(1+ q) on the left term
and x = a, y = b on the right term in (13), we get the statement. �

6. The other inequalities

In this section we will formulate some new inequalities for Gq(·; a, b), Iq(·; 0, b) and Rq(·; a, b). They will be proven
only for Gq(·; a, b). In the way presented in the previous sections, these inequalities for the other two types follow directly.
Furthermore, it seems that the corresponding inequalities for the integral Iq(·; a, b) defined by (2), exist and have different
forms because of the previously mentioned difficulties related to estimating of the difference of series.

So, let Jq(·) = Jq(·; a(J), b) denotes the q-integral defined by (1), (3) or (4). In the formulation and proofs of the theorems
we follow the inequalities for the finite sums given in [8].

The first class are the inequalities the Cauchy-Buniakowsky-Schwarz type.

Theorem 6.1. Let f , g : E(J) → R be two real functions and α, β > 1 the numbers satisfying 1
α

+
1
β

= 1. Then the following
inequalities hold:

(i)
1
α
Jq(|f |α) +

1
β
Jq(|g|β) ≥

1
b − a(J)

Jq(|f |)Jq(|g|),

(ii)
1
α
Jq(|f |α)Jq(|g|α) +

1
β
Jq(|f |β)Jq(|g|β) ≥

(
Jq(|fg|)

)2
,

(iii)
1
α
Jq(|f |α)Jq(|g|β) +

1
β
Jq(|f |β)Jq(|g|α) ≥ Jq(|f ‖g|α−1)Jq(|f ‖g|β−1),

(iv) Jq(|f |α)Jq(|g|β) ≥ Jq(|fg|)J(|f |α−1
|g|β−1).

Proof. If in well-known Young inequality (see [1, p. 381])

1
α
xα

+
1
β
yβ

≥ xy
(
x, y ≥ 0, α, β > 1 :

1
α

+
1
β

= 1
)

,

we put x = |f (bqi)|, y = |g(bqj)|, where i, j = 0, 1, . . . , n − 1, we have

1
α

|f (bqi)|α +
1
β

|g(bqj)|β ≥ |f (bqi)||g(bqj)|, i, j = 0, 1, . . . , n − 1.

Multiplying by qi+j and summing over i and j, we obtain

1
α

n−1∑
j=0

qj
n−1∑
i=0

qi|f (bqi)|α +
1
β

n−1∑
i=0

qi
n−1∑
j=0

qj|g(bqj)|β ≥

n−1∑
i=0

qi|f (bqi)|
n−1∑
j=0

qj|g(bqj)|

and, finally, inequality (i). The rest of inequalities can be proved in the same manner by the next choice of the parameters
in Young inequality:

(ii) x = |f (bqj)| |g(bqi)|, y = |f (bqi)| |g(bqj)|,
(iii) x = |f (bqj)|/|g(bqj)|, y = |f (bqi)|/|g(bqi)|,

(
g(bqj)g(bqi) 6= 0

)
,

(iv) x = |f (bqi)|/|f (bqj)|, y = |g(bqi)|/|g(bqj)|,
(
f (bqj)g(bqj) 6= 0

)
,

where additional conditions about not vanishing for f and g do not have influence on final conclusion. �
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Theorem 6.2. Let f , g : E(J) → R be two real functions and α, β > 1 the numbers satisfying 1
α

+
1
β

= 1. Then the following
inequalities hold:

(i)
1
α
Jq(|f |α)Jq(|g|2) +

1
β
Jq(|f |2)Jq(|g|β) ≥ Jq(|fg|)Jq(|f |2/β |g|2/α),

(ii)
1
α
Jq(|f |2)Jq(|g|β) +

1
β
Jq(|f |α)Jq(|g|2) ≥ Jq(|f |2/α|g|2/β)Jq(|f |α−1

|g|β−1),

(iii) Jq(|f |2)Jq

(
1
α

|g|α +
1
β

|g|β
)

≥ Jq(|f |2/α|g|)Jq(|f |2/β |g|).

Proof. As previous, the proof is based on Young inequality with appropriate choice of the parameters with assumption that
denominator is not vanish:

(i) x = |f (bqi)| |g(bqj)|2/α, y = |f (bqj)|2/β |g(bqi)|,
(ii) x = |f (bqi)|2/α/|f (bqj)|, y = |g(bqi)|2/β/|g(bqj)|,
(iii) x = |f (bqi)|2/α |g(bqj)|, y = |f (bqj)|2/β |g(bqi)|. �

The following few inequalities include the boundaries of the functions.

Theorem 6.3. If f , g : E(J) → R are two positive functions and

m = min
a≤x≤b

f (x)
g(x)

, M = max
a≤x≤b

f (x)
g(x)

,

then the following inequalities hold:

(i) 0 ≤ Jq(f 2)Jq(g2) ≤
(m + M)2

4mM

(
Jq(fg)

)2
,

(ii) 0 ≤

√
Jq(f 2)Jq(g2) − Jq(fg) ≤

(
√
M −

√
m)2

2
√
mM

Jq(fg),

(iii) 0 ≤ Jq(f 2)Jq(g2) −
(
Jq(fg)

)2
≤

(M − m)2

4mM

(
Jq(fg)

)2
.

Proof. With respect to the definition of Gq(·; a, b), the inequality (i) is the immediate consequence of the Cassels inequality
(see [8, p. 72]). The inequalities (ii) and (iii) can be obtained by a few transformations of (i). �

Theorem 6.4. If f , g : E(J) → R are two positive functions such that

0 < c ≤ f (x) ≤ C < ∞, 0 < d ≤ g(x) ≤ D < ∞,

then the following inequalities hold:

(i) 0 ≤ Jq(f 2)Jq(g2) ≤
(cd + CD)2

4cdCD

(
Jq(fg)

)2
,

(ii) 0 ≤

√
Jq(f 2)Jq(g2) − Jq(fg) ≤

(
√
CD −

√
cd)2

2
√
cdCD

Jq(fg),

(iii) 0 ≤ Jq(f 2)Jq(g2) −
(
Jq(fg)

)2
≤

(CD − cd)2

4cdCD

(
Jq(fg)

)2
.

Proof. Under the conditions satisfied by the functions f and g , we have

c
D

≤
f (x)
g(x)

≤
C
d
.

Applying Theorem 6.3 we get the inequality (i) and, using it, (ii) and (iii). �

Corollary 6.5. Let f : E(J) → R be a positive function such that

0 < c ≤ f (x) ≤ C < ∞.
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Then the following inequality holds:

Jq(f 2) ≤
(c + C)2

4cC
(
b − a(J)

) (Jq(f ))2 .

The next few inequalities are obtained via Jensen inequality for the convex functions.

Theorem 6.6. Let f , g : E(J) → R be two positive functions and p 6= 0 a real number. Then it holds(
Jq(fg)

)p
≤
(
Jq(f 2)

)p−1
Jq(f 2−pgp), for p 6∈ (0, 1),(

Jq(fg)
)p

≥
(
Jq(f 2)

)p−1
Jq(f 2−pgp), for p ∈ (0, 1).

Proof. For p 6∈ (0, 1) the function t 7→ tp is convex. Applying the Jensen inequality for convex functions (see [1, p.6]) we
have 

n−1∑
k=0

f (bqk)g(bqk)qk

n−1∑
k=0

(
f (bqk)

)2 qk


p

≤
1

n−1∑
k=0

(
f (bqk)

)2 qk
n−1∑
k=0

(
g(bqk)
f (bqk)

)p (
f (bqk)

)2
qk,

i.e., (
n−1∑
k=0

f (bqk)g(bqk)qk
)p

≤

(
n−1∑
k=0

(
f (bqk)

)2
qk
)p−1 (n−1∑

k=0

(
g(bqk)

)p (
f (bqk)

)2−p
qk
)

.

According to the definition of Gq( · ; a, b) we get the inequality. The reverse case is obtained for p ∈ (0, 1) because of the
concave function t 7→ tp. �

Corollary 6.7. Let f : E(J) → R be a positive function and p 6= 0 a real number. Then it holds(
Jq(f )

)p
≤
(
b − a(J)

)p−1 Jq(f p),

for p 6∈ (0, 1), or reverse for p ∈ (0, 1).

Theorem 6.8. If f , g : E(J) → R are two positive functions such that

0 < m ≤
g(x)
f (x)

≤ M < ∞

and p 6= 0 a real number, then it holds

Jq(f 2−pgp) +
mM(Mp−1

− mp−1)

M − m
Jq(f p) ≤

Mp
− mp

M − m
Jq(fg),

for p 6∈ (0, 1), or reverse for p ∈ (0, 1). Especially, for p = 2, we have

Jq(g2) + mMJq(f 2) ≤ (M + m)Jq(fg).

Proof. The inequality is based on the Lah–Ribarić inequality (see [1, p. 9] and [8, p. 123]). �
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