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Abstract

Starting from g-Taylor formula for the functions of several variables and mean value
theorems in g-calculus which we prove by ourselves, we develop a new methods for solv-
ing the systems of equations. We will prove its convergence and we will give an estima-
tion of the error.
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1. Introduction

At the last quarter of XX century, g-calculus appears as a connection be-
tween mathematics and physics (see [3-7]). It has a lot of applications in differ-
ent mathematical areas, such as: number theory, combinatorics, orthogonal
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polynomials, basic hyper geometric functions and other sciences: quantum the-
ory, mechanics and theory of relativity.
Let g be a positive real number, g # 1. A g-complex number [a], is

acC.

1—g°

el =

The g-factorial of a positive integer [1], and g-binomial coefficient we define
by

[O]q! =1, [n]q! = [n]q[n— l}q-n[l]q, {

Also, g-Pochammer symbol is

>~

c=a)" =1, —a)=T¢-ag) (keN). (1.1)

i

Il
)

2. On g-partial derivatives and differential

Let f(X), where ¥ = (x1,x2, . ..,x,) be a multivariable real continuous func-
tion. We introduce an operator ¢,; which multiplies a coordinate of the argu-
ment by

(egif)(X) = f (X1, Xim1, g, Xig1, - - 5 Xn)-
Furthermore,
(8/) (%) 1= (eq1, - - -, &gnf ) (X) = f(gX).
We define ¢-partial derivative of a function f(¥) to a variable x; by

S () = (&g:/) (%)
(1 -g)x

Dq,xif()_é)|x,v:0 = 11%Dq,¥,f(f)

Dy f (X) = (x: # 0),

At the similar way, high g-partial derivatives are

Dyf (%) = f (%),

D S0 =D, (D;f,gi knfo?)),
i+ +k,=m m=12...).
Obviously,
D;";’m"x?f(fc’) = DZ’;“/”W ) (G, j=12...,n, myn=0,1,...).
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Also, for an arbitrary @ = (a;,a,...,a,) € R", we can introduce g-differential
dyf (¥, a)
= (xl - al)Dq,XIf(a) + (XZ - a2)Dq~rzf(a) +eeet (xn - an)qunf(a)a
and high g-differentials:
e K .
d'f(7,d) = (v — @)Dy + (2 — @)Dy, + - + (va — a,)D,,) (@)
[£],! T ;
= Y D me(“)H(xj —a)".

i1+ tin=k [ll]q![lz]q! e [Zn]q! 45 j=1
i;€Ny

Notice, that a continuous function f(¥) in a neighborhood, which does not
include any point with a zero coordinate, has also continuous g-partial
derivatives.

3. About g-Taylor formula for a multivariable function

Now, we will discuss a new expansion of a function whose domain is a sub-
set of R”. First of all, we need the next lemma.

Lemma 3.1. It is valid
Dyu(x — )" = [n],(x — )" (x,x€R, neN).
For the proof see, for example, J. Cigler [2].
Theorem 3.2. Suppose that all g-differentials of f(x,y) exist in some neighbor-
hood of (a,b). Then
= X’l” ’ (1 b) n—i)
E: q = )" (y - b)'

n=0 i=0 n_l

Proof. Suppose that the function can be written in the next form

Application of g-partial derivative operators D, , and D, , gives us

Dgt’rfnm Z ch ID/;tftnm X = a) (y b)

n=0 i=0
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According to previous lemma, we conclude
Df;ti" (x — a)(i)(y - )("_i) =0 (k>ivm>n-—i).
In other cases, we have
Dy (x =) (y = b)"™"
= [l]q...[i7k+ 1]q(x,a)(i*k) n—1i -

. [n7i7m+1](y b)"'m

Supposed expansion is valid in some neighborhood of (a, ). Putting x = @ and
y = b, all members of the sum vanish, except for i = k and n — i = m. Hence,

Df;{”mf(a b) = crimi [K],! [m],! O

In the same manner, we can prove the analogous theorem for the general
case.

Theorem 3.3. Suppose that there exist all g-differentials of f(X) in some
neighborhood of d. Then

L &)
f %) :ZW

Unfortunately, it is very difficult to present the remainder term in ¢-Taylor
formula for the functions of several variables in an operative form. However,
for our further considerations it will be sufficient to formulate and prove the
next theorem.

Theorem 3.4 (¢-Lagrange). Let f(X) be a continuous function which has gq-
partial derivatives with respect to all variables x; (j=1,...,n) in some
neighborhood B of d@. Let X € B and G={y€ B: |y —d| <|X—d|}. Then
there exists g € (0, 1) such

(vge@nugh) (X", & eq):

¥) = (@) = Dy fE) (i — ay).
i=1

Proof. Let us write
f()_C') _f(a) :f(xla"'vx2) _f(al,~~'aa2)
:Z(f(al,...,ai,l,x,»,x,«ﬂ,...,xn)
i=1

_f(ah ey @i,y X1y e e 7-xn))~
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According to the g-Lagrange theorem for the functions of one variable (see [8]),
for every fixed i€ {l1,...,n}, there exist ¢;€ (0,1), such that for every
q € (q;,1) U (1,g;") there exists a value &; with the property |&; — a; < |x; — aj
for which it is valid:

f(alv" A1, Xy Xig 1y - - 7xn) *f((l], sy A1, iy Xig 1y - - ~axn)
- Dq,x;f(ah ey aiog, éiaxi-%—lvxn)(xi - ai)
.20
Taklng 6 = (ah s i, éiaxi-%—laxn)a we get
20 o .
1€ —a|<||¥x=al G=1,...,n).

For ¢ = max{q,,...,q,} the statement of theorem holds. O

4. On ¢g-Newton—Kantorovich method

We consider a system of nonlinear equations

-

/&) =0,

where 7(%) = (fi(¥), (%), ..., /,(¥) with ¥ = (x;,x2,...,x,), n € N. We will
suppose that this system has an isolated real solution ¢. Using g-Taylor series
of the function f(¥) around some value ¥" ~ ¢, we have

7@ mf,-()‘c’("’)) + Xn:Dq‘x/.f, (x’“'”) (5_,. - ij) (i=1,2,...,n).
=
In the matrix form, we rewrite
FE=F(E) +w, () (E-3),
where
Wo(%) = Dof (¥) = [Dys fi(3)]
is the Jacobi matrix of g-partial derivatives. If the matrix W, is regular, there

exists the inverse matrix Wq‘l, so that we can formulate ¢g-Newton—-Kantoro-
vich method in the form (see, for example, [1])

-1
) =5, (;(m)) f(fw))_

nxn

Theorem 4.1. Let the function f()’f) has q-partial derivatives to all variables x;
(Gj=1,....n)inaball K[F" R = {%: | — 29| < R}. Suppose that the matrix
W4 (X) is regular in this ball and the conditions
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W4 (X) = Wy < LIF = Fl, (4.1)

I7) ~ 70) — Wy - 9 < 5 1% - 5 (42)

are satisfied for all X,y € K [)—5(0)’ R] and a constant L > 0. If there are fulfilled the
inequalities

1w, <b, (W, FE) <a, h=abL<1/2
and

1 -+v1-2h
R>r:Ta,

then the sequence {x™} N, converges to the solution e KRV, r) and it is valid

me

18" < e @h (meN).

Proof. At the start, let us construct the sequences {4} ren,s {ax)ren, (bitken,
and {Vk}keNo by
hy by
Ajy1 :mak, bry1 = .

1— VT =20,

Ajet1
Rt

hir1 = b L, Frp =

with the starting values hy = h, ag = a, by = b, ro = r. We will prove that the se-
quence {5c'<'">}m€N0 exists and for every k € N, there holds

-1
wawq < b, (43)
-1
() 7)) < (44
hk g 1/27 (45)
KX r] c KR ry). (4.6)

The statements holds for £ = 0 with respect to the conditions of the theorem.
Using the method of mathematical induction, suppose that the statements
are valid for any k < m and prove that they are valid for k=m + 1 too. By
the definition of the sequence and the induction conjecture,

-1
[ — g = HWq (55“”)) f()—gm))

< a,.
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Since
1—-+1-2h,
Irm = ———F— 4y = ap,
D
it is valid
||)—C»(m+1) _)—C»(m)H < Fons
ie. X" e K[x™ 1, c K[¥”,R]. So, W, (") exists and it is regular. Its

inverse can be expressed in the form

-1 -1 -1 -1
W, () :<1+Wq(5e<'">) (Wq()'c'("’+l))—Wq()'c’<'">))> w,(E)

Because, from (4.1) it holds

-1
S R G N CA G B AC E

< meam = hm < 1/27

(m+1)

using Neumann expansion we get

e X ey ) o)
)" <

1 — hy,
what proves (4.3).
From the definition of the sequence it follows that

Wq(f<»z>)(£<m+1> _ £<m>) Y

wherefrom, according to (4.2), it can be written

‘i

= bm+17

2
b

J?(f(mn))H _ HJ}'()—C'(WH—I)) _J?()—C»(m)) _ Wq()_c'(m)) ()—C'(m+1> _)—C»(m)) H

|)?(m+1) _)?(m)”Z <

Hence,

i e L
q<)?(m+l)) f()?(erl))H < HW‘](J‘C‘(erl)) IHHJ(‘()‘C‘(MJH))H < bm+1§a’2n

> P
m

= Ap = Apyl,

2(1 = hy)
what proves (4.4).
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The inequality (4.5) is obvious:
oy be
21 =hy) "1 —=hw 21 —h,)* 2

For the proof of (4.6) we consider ¥ € K[¥" ", r,.,1]. Then,

hm+1 = am+lbm+1L =

[ N [ i R s

It can be shown that r,,+ + a,, = r,,, S0 ¥ € K [3?(’”), 'w), 1.€. the inclusion is valid.
Finally, by the construction of the mentioned sequences, it is clear that

B 1
A m,

=4y <
Am+1 2(1 — hm)am 2

so, lim,,_,..a,, = 0. Further,
2a,,

limr, = lim —— =0,

m—o00 m—00 (1 + 1 — 2}1’")

wherefrom we conclude that there exists a unique point & € N> K [¥™, r,,] and

& = lim ™.

Since
Jim Hf(f“"“))‘ < lim 2d% =0,

we get [|F ()] =0, ie. f(&) =0.
For the last inequality, let us note that
I
P < 2hm7
and then
[s] g amhma hm+] < Zhi
for any m € N. Repeating this, we have

1

hm < ~ 2h 2”1
5 (2h)

and

ap < hmflhm72am72 < te < hmflhmf% . 7ha g % (2h)1+2+-"+2m71

a m_
=5 (2n)*" "
Because
- 2a,,
|E -2 < rm = 2 g,
(141 —2h,)

we have the estimation of error. [
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We can formulate and prove one more theorem about the convergence of
the method with some changed conditions.

Theorem 4.2. Let the function f()?) be continuous and has q-partial derivatives to

all variables x; (j=1,...,n) in a ball K 9 R]. Suppose that the matrix Wy (%) is
regular in this ball and the conditions

17y (X) = W) < LIIX =71, (4.7)
I @) = FG) = W& = DI < LI =5, (4.8)

-1,
[ <o wa(e) 7))

are satisfied for all X,y € K[)_c'(o),R] and a constant L >0, where a,b > 0 are the
constants such that and h= abL < 1. Let

< a, (4.9)

_a
1-nh
Then the sequence {¥™}
the estimation

r <R.

men, converges to the solution Ee K[¥,r] and it holds

]
ah

£ _ zm
=)<

Proof. At the start, we will prove that ¥ € K[¥”, /] for all m € Ny. By the
definition of the sequence and the condition (4.9), we have

(R H w,(77) 7(7) H <a<r
Suppose that ¥* € K[¥”, 7] for k < m. Then
-1, o
e 2 = [ 7 @) <ol ()

Since

Wq(f(mfl)) (55("1) _)?(m,])) — _f(f(mfl)}

then
Hf()_c'(’”)) H = H]?()_é(m)) _f_"()}’(mfl)) _ Wq()—c'(mfl))()-c'(m) _f(m—l)) H
and, according to (4.8),

Hf()—c_»(m)) H < L”)—C»(m) _ )—C»(mfl)||2.
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Hence,

||x (m+1) m || < bL”—'m _ (m I)HZ :éH)—C»(m) _)—C»(m—l)||2
a

)

ie.,

h —(m+1 m h =(m —(m—1 :
Clm ) < (2 -5
a a

This, after repeating m times, gives

Bty o) By o)
Lt [N G i [ BN

a
where from

[ — 2| < ah®
Finally,

£ = 2O < [# =) 4 8 =5 - | -2

] =1 it A
<a(h +h +~-~+h+l)<a;h71_hfr,

so, ¥ e KR, 1.
Let us prove that {x ”’)}mGNO is a Cauchy sequence. Really, for any k,m € N
it is valid

—(m+k) )—Cf(m)H < ||)—C»(m+k) _ )—C»(erkfl)H + ||)—C—(m+kfl) o )—C»(m+k—2)||

%
R e R (1 PR e BEED)
2m—1 zm k ah
ah Z (h el

Since 0 < 4 <1, the last term can be arbitrary small for large enough m € N.
Therefore {x }meN is a Cauchy sequence and it converges to a point
g e K[#Y, 7). Let us prove that 7(&) = 0. According to (4.7),

[wa(3) = wa (7) | < L1s™ -0 < Lr,
and then

HW,,()?('")) H < Lr+ HW(,(SC’(O)) H =C (C=const.).
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So, by the definition of the sequence,

[P < = () I =) < e =5

Since f;(X), i = 1,...,n, are continuous, it holds
lim {7z = ||7®)]| =0,
wherefrom we get
f(&=o.
Finally, if £k — oo in the inequality
ahZ'"fl

we get the estimation. [

The conditions of Theorems 4.1 and 4.2 are quite strong and it seems that it
is difficult adjust them. But, the Lipschitz condition (4.1)—(4.7) for W ,(X) and
inequality (4.8) can be presented over g-partial derivatives of the second order.
Without loss of generality, let us choice following norms for vectors

n

X=[x,...,x,]" and matrices 4 = [aijl; ;i
n
[¥]] = max x|, 4] = max ; Jay ,

Lemma 4.3. Let the function f (X) has g-partial derivatives of the second order in
a ball K. If

> |2
k=1

for a constant N > 0 and all X € K then exists ¢ € (0,1) such that for every value
g€ (¢, 1)U(1,47") and for all 3,3 € K the conditions

[Wy(X) = WP < LIX = I,
IF ) = 75) = W, () (& = 9| < L|F -5
with L = nN are satisfied.

<N, (,j=1,...,n, ¢#1)

Proof. By the accepted norm and the definition of W,(¥), we have

17, (X) = W,y(¥)]| = max Z | Dy, fi(®) — Dy fi(3)].

1<i<n =
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Applying ¢g-Lagrange mean value theorem for the functions of several variables
to the functions D, fi(¥X), there exist ¢; € (0,1) such that

(Vg € (g 1)U (1Lg") (... 27 € {21l -7 < 12— 51

. Dq,x,f;'(f) - thjﬁ(j;) = ZDz?,x,'xkﬁ<E(i‘k))(xk _yk)

=1
If (4.3) is valid, then

n n

1W,(3) = W, ()l <max > > D7 fiZ") (o — )

1<i<n = =
n n

ik 5 o 5 o

<max ) ;Dﬁ,x,x,(ﬁ(é" )|IE =5l < nN||F - 7
=dr=

for all g € (q,,1) U (1,q;"), where ¢* = max, <, j<,{q;}-
Further, applying ¢g-Lagrange mean value theorem for the functions of
several variables to the functions f;(¥) , there exist g; € (0,1) such that

(Vg € (@)U (L) (3")....a" e (i - 51| < ¥ - 51})
)~ fi5) = iDq.x/ﬁ<ﬁ<i’f>><xj —),
wherefrom it can be written
fE) ~ £G) - ZDf e,
- Z Dy @) 0y — ;) — Z Dy i) 05— )
= 3= (D) = Dy i) (1)
Then

I/ (%) = £(F) — W,(7)(E — 7)|| = max

1<i<n

60 = 50) = 3 D i3y~ )

n

< max
1<i<n <~ T
Jj=

Dy /(@) = Dy fi(5)

x; _J/j|-

Applying g-Lagrange mean value theorem for the functions of several variables
to the functions D, fi(X), there exist g;; € (0, 1) such that



1444 P.M. Rajkovié¢ et al. | Appl. Math. Comput. 168 (2005) 1432-1448
~ ~— ij,1 ij,n) - -
(Va € @, 1)U (1,3;") (37, ... 797 e (37 - 7] < IF - 71}

—(i.j - (i k ij
@) = Dy fi3) = 37 D2, A ) — 3y,

—(i,j.k i
D;,ijkﬁ(l)(J ))( ] _yk)

-» Jik)
||x—y\|p3a<x22\ )|u'f ~

|x—y\|max2||u” —y||2\ 2 e AE)| < N = 5

¥ =l

for any ¢ € (q...1) U (1,4.), where ¢, = maxi<;;<,{3;, G;;}-
Finally, § = max{q,,q,.}. O

Now we are ready to give the theorem about convergence of the method
with more effective checkable conditions.

Theorem 4.4. Let the function f()'c’) be continuous and has all gq-partial
derivatives of the second order in a closed ball K [J?(O),R]. Suppose that exist the
constants a,b,L >0, where h=abL <1, and g€ (0,1), such that for all
ge (g, )U(l,g") and % € K[Z", R), it is valid:

L
‘D <= Gj=1,....n). (4.10)
n

q.XjX _‘)

Also, let the matrix W ,(X) be regular in KIx“, R] and has the properties

~1_
) ) <o ] <o

If
a
= R
r 1—7 < It
then there exists q € (0,1) such that for any g€ (g, 1)U(1,47") the sequence
{z" }mENO converges to the solution & € K[¥”,r] and it holds the estimation
T a?!
1€ =" <

ST
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Proof. According to Lemma 4.3 and the condition (4.10), it exists g € (0,1)
such that for all ¢ € (g,1) U (1, g_,) the conditions (4.7) and (4.8) are satisfied.
Then we get the statement as the corollary of Theorem 4.2, with

g =max{g,q}. 0
5. Equations with infinite products

For computing the infinite product

00

fltg)=1[(1—1w") (teC)q <),

n=1
A.D. Sokal in [9] suggests a quadratically convergent algorithm based on the
identity
(_t>mqm(m+l)/2

100 =2 T =)

m=0

Here, we are interesting in finding the solutions of an equation
F(t) Ef(tvq) —a= Oa

for a fixed value ¢ and known values a € C. Let us notice

Dy f(t,q) = mﬂf’ q)-

Applying our g-Newton method [10], we find iterative process
1 —g¢q a
t =t — (1 —at 1—
S ak)( f(tk,q)>

which leads us to the solution of the previous equation.
Now, there is no problem to use our considerations for solving the systems
of the type

H(f (% q)) = 0.
We will demonstrate it in the seventh section.

6. Zeros of the functions defined via g-integrals

Let us consider the equation

F(x) = /Oxh(t)dqt—a =x(1 —q)ih(qu)qk —a=0,

k=0

where a and ¢ are real numbers and |¢g| < 1.
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Since D F(x) = h(x), we can apply g-Newton method
F(xn)
h(xa)

with some initial value x( (for example, xo = a). Instead of ¢-integral we eval-
uate partial sum with a proper exactness. Now,

(n=0,1,...),

Xntl = Xp —

lim x, = x.

n—oQ

7. Examples
Example 7.1. For the system of nonlinear equations

fie,y) = +y+)y* —1.44 =0,
fxy)=x*+x+)y —241=0,

we have the next g-Jacobi matrix

(I+g+¢)x 1+ (1+q)y

W, (x,y) =
o(x:2) 1+ (1+qx (I+qg+¢*)y°

and the second g-derivatives

Do/t =1+ q)(1+q+¢)x, Dyyfo=1+q)(1+q+4)y,

Dq,xyfl = qucfl = Dq.,xyf2 = Dq,}fo = Oa Dq,wfl = Dq,xfo =1 + q.

Starting with initial values xo = —1.2, yo = 1.3, we are looking for the solution
inside the ball whose center is (xg, o) and radius is R = 0.1. Applying method
for ¢ = 0.9, we have b =0.360752, a = 0.0407325 and N =8.4, L =nN = 16.8.
Hence h=abL =0.246865<1/2 and r=0.0475979 < R, we conclude that
g-Newton—Kantorovich method is converging. Really, we get the next
iterations:

0 [—1.2} [—1.15927} {—1.16194] [—1.16169} {—1.16171]
Sl 13 )7 1.30549 |7 1.30488 |7 | 1.30495 |’ | 1.30494 |

Example 7.2. Let us consider the next system of nonlinear equations
X+ T — x5 =2,
X7 —49x; +x3 = 6,

N +T(x—1)—x =-3.
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If we use ¢g-method, we yield the next g-Jacobi matrix

(1+q)x 7 ~(1+q)(1 +¢°)x
Wq(xl,x27x3) = (1 +q)x1 —49(1 +L])X2 (1 —|—q)x3
(I+g)x 7 —(1+g)x3

Using ¢ = 0.9, we find the solutions (x; = v/5, x, = 1/7, x3 = v/2), with accuracy
on five decimal digits after n = 7 iterations.

27 116137 [2.1997 [2.17947 [2.2331 2.23607
#:101,10705,]0.353],10.1937 |, | 0.1450 | — | 0.142871
1] [2.299 1.747 1.4633 1.4078 1.41427

The next example will show the advantages of g-Newton-Kantorovich
method with respect to the classical one.

Example 7.3. Let us consider the next system of nonlinear equations

12x3
f — 4| +e™ 0 =2, log, (—xxl - 6> +xi=09.
2

If we use g-method for ¢ = 0.9, we yield the following iterations for the exact
solutions (x;,x,) = (v/3,36/7) :

ny [2] [1.78067} {1.73405] [1.73208} [1.73205} - [1.73205}
5]715.29844 |7 | 520213 | [ 5.15274 | | 5.14302 5.14286 )

The classical Newton—Kantorovich method with initial values x; =2, x, =5
can not be used in this case because the partial derivative of the first function
with respect to the first variable does not exist.

Example 7.4. For known ¢ (0 <|g| < 1), the solutions x and y of the system
with some infinite products

Ia —xq”>/ﬁ<1 ) =172

> ] (1-yq")
H(l —xq")—|—e£[1 =5

n=1

can be also found by this method. For example, for ¢ = 0.75, we have the solu-
tions x =0.104199, ... and y = —0.127765, .. ..
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Remark. Another approach to this system is to solve the system introducing
new notation for products, and then, to find x and y by our ¢g-method from the
fifth section.

Example 7.5. Let us consider the equation

: 64/8
Ndsut ———Y°
/0 g(t) dyya 128 — 273

Applying g-Newton method, we get

xo = 1.32499, x, = 1.45871,x, = 1.39966,x; = 1.41999,
Xy = 1.41207,... xi0 = 1.41421.

Really, the exact solution is x = v/2 and the function is g(r) = .
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