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Abstract. Many Hankel determinants computations arising in combinatorial analysis, can
be done by results from the theory of standard orthogonal polynomials. Here, we will
emphasize a special sequence which requires including of discrete Sobolov orthogonality in
order to find their closed form.

1 Introduction

The Hankel transform of a given number sequence A is the sequence of Hankel determinants
H given by

A = {an}n∈N0 → H = {hn}n∈N0 : hn = |ai+j−2|ni,j=1. (1)

This term is first used by J.W. Layman [7]. There is close connection of evaluations of The
closed-form computation of Hankel determinants is of great combinatorial interest related
to partitions and permutations. A lot of methods is known for evaluation of these determi-
nants a long list of known determinant evaluations can be seen in [6]. We also found a few
interesting results exposed in [3] and [9].

Here, we will consider the sequence A whose arbitrary element is

an =
n∑

k=0

Tn,kr
k (r ∈ Z), (2)

where

Tn,k =

(
2n

n− k

)
−

(
2n

n− k − 1

)
=

2k + 1

n + k + 1

(
2n

n− k

)
(0 ≤ k ≤ n; n ∈ N0). (3)

We will imply that Tn,k = 0 in other cases.
The first members of A and its Hankel transform are:

A =
{
1, 1 + r, 2 + 3r + r2, 5 + 9r + 5r2 + r3, . . .

}
, H =

{
1, 1 + r, (1 + r)2, (1 + r)3, . . .

}
.

Our purpose is to prove that, in general, it is valid hn = (1 + r)n−1.
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2 Preliminaries

The ordinary generating function of the sequence an is the power series

f(x) =
∞∑

n=0

anxn, with an = [xn]f(x), (4)

where the operator [xn] extracts the coefficient of xn. Sequences are often referred to by
their ’A’ number in the On-Line Encyclopedia of Integer Sequences [10].

Let us remand that the sequence of Catalan numbers

Cn =
1

n + 1

(
2n

n

)
(n ∈ N0) (5)

can be written in the integral form

Cn =
1

2π

∫ 4

0

xn

√
4− x

x
dx (n ∈ N0) (6)

This sequence has the generating function

c(x) =
∞∑

n=0

Cnxn =
1−√1− 4x

2x
. (7)

Definition 1. The Riordan array is an infinite lower-triangular matrix M = [mj,k] defined
by a pair of generating functions g(x) =

∑∞
k=0 gkx

k and f(x) =
∑∞

k=1 fkx
k where f1 6= 0,

whose k-th column is generated by g(x)f(x)k (the first column being indexed by 0), i.e.

mj,k = [xj]
(
g(x)f(x)k

)
(j, k ∈ N0). (8)

The matrix M corresponding to the pair of functions f and g is denoted by (g, f) or R(g, f).
The Riordan group is a set of infinite lower-triangular matrices, where each matrix is

defined by a pair of generating functions.

We will consider the transform defined by the Riordan array

(
c(x), xc2(x)

)
. (9)

This matrix is the inverse of the Riordan matrix
(

1
1+x

, x
(1+x)2

)
, which is the coefficient array

of the Morgan Voyce polynomials. They are closely linked to the Chebyshev polynomials of
the second kind.

The general element Tn,k of (c(x), xc2(x)) is given by (3). This is the sequence A039599
and represents the number of lattice paths from (0, 0) to (n, n) with steps E = (1, 0) and
N = (0, 1) which touch but do not cross the line x− y = k and only situated above this line.
Also, This sequence appears in the definition of the ”Ballot” transform (see [1]).
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By the theory of Riordan arrays, the generating function of an can be evaluated from

(
c(x), xc2(x)

) · 1

1− rx
=

c(x)

1− rxc2(x)
,

i.e.

G(x) =
∞∑

n=0

anxn =
(r + 1)

√
1− 4x + r − 1

2r − (r + 1)2x
. (10)

The function

F (x) = 1
x

G
(

1
x

)
=

(r + 1)
√

1− 4
x

+ r − 1

2rx− (r + 1)2
(11)

will be very useful in the next sections.

3 The properties of number sequences

Notice
Tn,0 = Cn, Tn,n = 1, Tn,k = 0 (k < 0 ∨ k > n). (12)

The sequence {Tn,k} satisfies the next recurrence relation

Tn,k = Tn−1,k−1 + 2Tn−1,k + Tn−1,k+1 (k = 0, 1, . . . , n). (13)

Let us denote

ζ =
(r + 1)2

r
. (14)

Lemma 2. For the sequence {an}, the next recurrence relation is valid

an = ζ an−1 − r + 1

r
Cn−1 . (15)

Proof. We can write

an − (r + 1)2

r
an−1 = an − r an−1 − 2 an−1 − 1

r
an−1

=
n∑

k=0

Tn,kr
k −

n−1∑

k=0

Tn−1,kr
k+1 − 2

n−1∑

k=0

Tn−1,kr
k −

n−1∑

k=0

Tn−1,kr
k−1

= −1

r
Tn−1,0 +

(
Tn,0 − 2Tn−1,0 − Tn−1,1

)

+
n−2∑

k=1

(
Tn,k − Tn−1,k−1 − 2Tn−1,k − Tn−1,k+1

)
rk

+
(
Tn,n−1 − 2Tn−1,n−1 − Tn−1,n−2

)
rn−1 +

(
Tn,n − Tn−1,n−1

)
rn .

By using (12) and (13), we finish the proof. 2
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Theorem 3. The sequence {an} can be represented in the integral form

an =
r + 1

2π

∫ 4

0

xn

(r + 1)2 − rx

√
4− x

x
dx +

r − 1

r
ζn. (16)

Proof. We will apply the mathematical induction. Since

r + 1

2π

∫ 4

0

1

(r + 1)2 − rx

√
4− x

x
dx +

r − 1

r
= 1,

and a0 = 1, we have that the formula is valid for n = 0.
Suppose that the formula is true for n. Hence

ζ an =
r + 1

2π

∫ 4

0

ζxn

(r + 1)2 − rx

√
4− x

x
dx +

r − 1

r
ζn+1.

Since
r + 1

r
Cn =

r + 1

2πr

∫ 4

0

xn

√
4− x

x
dx,

we can write

ζ an − r + 1

r
Cn =

r + 1

2π

∫ 4

0

xn
( ζ

(r + 1)2 − rx
− 1

r

) √
4− x

x
dx +

r − 1

r
ζn+1.

By using (15), we get

an+1 =
r + 1

2π

∫ 4

0

xn+1

(r + 1)2 − rx

√
4− x

x
dx +

r − 1

r
ζn+1 ,

wherefrom we complete the proof. 2

4 The Hankel determinants

and orthogonal polynomials

Between a few methods for evaluating the Hankel determinants, our attention occupy the
method based on the theory of distributions and orthogonal polynomials.

Namely, the Hankel determinant hn of the sequence {an}n≥0 equals

hn = an
0β

n−1
1 βn−2

2 · · · β2
n−2βn−1 , (17)

where {βn}n≥1 is the sequence given by:

G(x) =
∞∑

n=0

anx
n =

a0

1− α0x− β1x
2

1− α1x− β2x
2

1− α2x− · · ·

. (18)
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The previous sequences {αn}n≥0 and {βn}n≥1 are the coefficients in the recurrence relation

Qn+1(x) = (x− αn)Qn(x)− βnQn−1(x) , (19)

where {Qn(x)}n≥0 is the monic polynomial sequence orthogonal with respect to the functional
U determined by

an = U [xn] (n = 0, 1, 2, . . .) . (20)

In some cases, it exists weight function w(x) such that the functional U can be expressed by

U [f ] =

∫

R
f(x) w(x) dx

(
f(x) ∈ C(R); w(x) ≥ 0

)
. (21)

So, we can join to every weight w(x) two sequences of coefficients, i.e.

w(x) 7→ {αn, βn}n∈N0 , (22)

by

αn =
U [x Q2

n(x)]

U [Q2
n(x)]

, βn =
U [Q2

n(x)]

U [Q2
n−1(x)]

(n ∈ N0) . (23)

Finding of the weight function can be started by the function

F (z) = 1
z

G
(

1
z

)
. (24)

From the theory of distribution functions (see Chihara [2]), we have Stieltjes inversion func-
tion

ψ(t)− ψ(s) = − 1

π

∫ t

s

=F (x + iy)dx. (25)

hence we find the distribution function ψ(t). After differentiation of ψ(t) and simplification
of the resulting expression, we finally have w(x) = ψ′(x).

The following lemma will be very useful in further discussion.

Lemma 4. Let

w(x) 7→ {αn, βn}n∈N0 , w̃(x) 7→ {α̃n, β̃n}n∈N0 . (26)

Then

(i) w̃(x) = Cw(x) ⇒ {α̃n = αn, β̃0 = Cβ0, β̃n = βn (n ∈ N)} ; (27)

(ii) w̃(x) = w(ax + b) ⇒ {α̃n =
αn − b

a
, β̃0 =

β0

|a| , β̃n =
βn

a2
(n ∈ N)} ; (28)

(iii) If

wc(x) =
w̃(x)

x− c
(c /∈ supp(w̃)) , (29)
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then
αc,0 = α̃0 + r0 , αc,k = α̃k + rk − rk−1,

βc,0 = −r−1, βc,k = β̃k−1
rk−1

rk−2

(k ∈ N) ,
(30)

where

r−1 = −
∫

R
wc(x) dx, rn = c− α̃n − β̃n

rn−1

(n = 0, 1, . . .) . (31)

(iv) If

ŵd(x) =
w̃(x)

d− x
(d > x, ∀x ∈ supp(w̃)) , (32)

then
α̂d,0 = α̃0 + r0 , α̂d,k = α̃k + rk − rk−1,

β̂d,0 = r−1, β̂d,k = β̃k−1
rk−1

rk−2

(k ∈ N) ,
(33)

where

r−1 =

∫

R
ŵd(x) dx, rn = d− α̃n − β̃n

rn−1

(n = 0, 1, . . .) . (34)

5 The connections of our main problem

with classical orthogonal polynomials

From the formula (16), we conclude that the computation of Hankel determinants is directly
connected with the monic polynomial sequence {Qn(x)} which is orthogonal with respect to
the discrete Sobolev inner product

ϕ̃(f, g) =
r + 1

2π

∫ 4

0

f(x)g(x)

(r + 1)2 − rx

√
4− x

x
dx +

r − 1

r
f(ζ)g(ζ)

(
ζ =

(r + 1)2

r

)
(35)

We will start with a special Jacobi polynomial Pn(x) = P
(1/2,−1/2)
n (x) (n ∈ N0), which is also

known as the Chebyshev polynomial of the fourth kind. The sequence of these polynomials
is orthogonal with respect to

w∗(x) = w(1/2,−1/2)(x) =

√
1− x

1 + x
, x ∈ (−1, 1) .

They satisfy the three-term recurrence relation (Chihara [2]):

Pn+1(x) = (x− α∗n) Pn(x)− β∗nPn−1(x) (n ∈ N0), P−1(x) = 0 , P0(x) = 1,

where

α∗0 = −1

2
, α∗n = 0 , β∗0 = π, β∗n =

1

4
(n ∈ N) .

For the weight function

w̃(x) = w
(x

2
− 1

)
=

√
4− x

x
, x ∈ (0, 4) , (36)
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applying Lemma 4(ii) with a = 1/2 and b = −1, we find coefficients

α̃0 = 1, α̃n = 2 (n ≥ 1) β̃0 = 2π , β̃n = 1 (n ≥ 1) .

Further, we will define the weight function

ŵ(x) =
w̃(x)

(r+1)2

r
− x

=
1

(r+1)2

r
− x

√
4− x

x
, x ∈ (0, 4) .

Since d = (r + 1)2/r > 4 for r > 0, we can apply the case (iv) from Lemma 4. So, we find

r−1 =
2π

r + 1
, rn =

1

r
(n ∈ N0).

Hence

α̂0 =
r + 1

r
, α̂k = 2 (k ∈ N), β̂0 =

2π

r + 1
, β̂1 =

r + 1

r
, β̂k = 1 (k ∈ N; k ≥ 2).

Finally, let us denote with {Sn(x)} the sequence of monic polynomials orthogonal with
respect to the inner product

ϕ(f, g) =

∫

R
f(x)g(x) w(x) dx , (37)

where the weight w(x) is defined by

w(x) =
r + 1

2πr
ŵ(x) =

r + 1

2πr
· 1

(r + 1)2 − rx

√
4− x

x
, x ∈ (0, 4) . (38)

Applying the case (i) from Lemma 4, we find

α0 =
r + 1

r
, αk = 2 (k ∈ N), β0 =

1

r
, β1 =

r + 1

r
, βk = 1 (k ∈ N; k ≥ 2).

Their squared norms are

ϕ(S0, S0) =
1

r
, ϕ(Sn, Sn) = βnβn−1 . . . β0 =

r + 1

r2
(n ∈ N) . (39)

6 The connection with polynomials orthogonal

with respect to a discrete Sobolev inner product

Here, we will recall the results from the paper [8] for λ = r/(r − 1) and c = ζ.
The sequence of monic polynomials {Qn(x)} orthogonal with respect to the inner product

ϕ̃(f, g) = ϕ(f, g) +
1

λ
f(c)g(c) , (40)

is quite determined by {Sn(x)}, λ and c.
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Lemma 5. The polynomials {Qn(x)} satisfy three-term recurrence relation of the form:

Qn+1(x) = (x− σn)Qn(x)− τnQn−1(x) (n ∈ N), Q−1(x) = 0, Q0(x) = 1. (41)

The first few members of the sequence {Qn(x)} are:

Q0(x) = 1, Q1(x) = x− (r + 1), Q2(x) = x2 − (r + 3)x + (r + 1).

Hence τ0 = µ0 = 1 and τ1 = r + 1.

Lemma 6. The polynomials {Sn(x)} at the point ζ have the following values:

S0(ζ) = 1, Sn(ζ) = (r + 1) · rn−1 (n ∈ N) . (42)

Proof. It can be proven by mathematical induction. 2

Let us denote by

Km(c, d) =
m∑

j=0

Sj(c)Sj(d)

ϕ(Sj, Sj)
, λm = 1 +

Km(c, c)

λ
(m ∈ N) .

Here, it is
Km(ζ, ζ) = r(r2m+1 − 1), λm = r2m+1 (m ∈ N) .

Also, in the paper ([8]), it is proven that

ϕ̃(Qn, Qn) = ϕ(Sn, Sn)
λn

λn−1

(n ∈ N; n ≥ 2) . (43)

Hence

ϕ̃(Q0, Q0) = 1, ϕ̃(Q1, Q1) = r + 1, ϕ̃(Qn, Qn) = r + 1 (n ∈ N; n ≥ 2) . (44)

Since ϕ̃(Qn, Qn) = τnτn−1 . . . τ1τ0, we have

τ0 = 1, τ1 = r + 1, τn = 1 (n ∈ N; n ≥ 2) .

Now, we have all elements for formula (17) and we can compute hn by

hn = µn
0τ

n−1
1 τn−2

2 · · · τ 2
n−2τn−1 .

Theorem 7. The Hankel transform of the sequence {an} defined by (2) is

hn = (r + 1)n−1 (n ∈ N) .
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