An application of Sobolev orthogonal polynomials in the computing of a special Hankel determinant

Paul Barry ${ }^{1}$, Predrag M. Rajković ${ }^{2}$, Marko D. Petković ${ }^{3}$
${ }^{1}$ School of Science, Waterford Institute of Technology, Ireland
${ }^{2}$ Faculty of Mechanical Engineering, University of Niš, Serbia
${ }^{3}$ Faculty of Sciences and Mathematics, University of Niš, Serbia
E-mail: pbarry@wit.ie, pedja.rajk@masfak.ni.ac.yu, dexterofnis@gmail.com

2000 MS Classification: 11B83, 05A19, 33C45, 11B37, 11B65.
Keywords: Determinants, Polynomials, Sobolev space, Recurrence relations.
Abstract. Many Hankel determinants computations arising in combinatorial analysis, can be done by results from the theory of standard orthogonal polynomials. Here, we will emphasize a special sequence which requires including of discrete Sobolov orthogonality in order to find their closed form.

1 Introduction

The Hankel transform of a given number sequence A is the sequence of Hankel determinants H given by

$$
\begin{equation*}
A=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}} \quad \rightarrow \quad H=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}: \quad h_{n}=\left|a_{i+j-2}\right|_{i, j=1}^{n} . \tag{1}
\end{equation*}
$$

This term is first used by J.W. Layman [7]. There is close connection of evaluations of The closed-form computation of Hankel determinants is of great combinatorial interest related to partitions and permutations. A lot of methods is known for evaluation of these determinants a long list of known determinant evaluations can be seen in [6]. We also found a few interesting results exposed in [3] and [9].

Here, we will consider the sequence A whose arbitrary element is

$$
\begin{equation*}
a_{n}=\sum_{k=0}^{n} T_{n, k} r^{k} \quad(r \in \mathbb{Z}), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{n, k}=\binom{2 n}{n-k}-\binom{2 n}{n-k-1}=\frac{2 k+1}{n+k+1}\binom{2 n}{n-k} \quad\left(0 \leq k \leq n ; n \in \mathbb{N}_{0}\right) \tag{3}
\end{equation*}
$$

We will imply that $T_{n, k}=0$ in other cases.
The first members of A and its Hankel transform are:

$$
A=\left\{1,1+r, 2+3 r+r^{2}, 5+9 r+5 r^{2}+r^{3}, \ldots\right\}, \quad H=\left\{1,1+r,(1+r)^{2},(1+r)^{3}, \ldots\right\} .
$$

Our purpose is to prove that, in general, it is valid $h_{n}=(1+r)^{n-1}$.

2 Preliminaries

The ordinary generating function of the sequence a_{n} is the power series

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad \text { with } \quad a_{n}=\left[x^{n}\right] f(x) \tag{4}
\end{equation*}
$$

where the operator $\left[x^{n}\right]$ extracts the coefficient of x^{n}. Sequences are often referred to by their 'A' number in the On-Line Encyclopedia of Integer Sequences [10].

Let us remand that the sequence of Catalan numbers

$$
\begin{equation*}
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \quad\left(n \in \mathbb{N}_{0}\right) \tag{5}
\end{equation*}
$$

can be written in the integral form

$$
\begin{equation*}
C_{n}=\frac{1}{2 \pi} \int_{0}^{4} x^{n} \sqrt{\frac{4-x}{x}} d x \quad\left(n \in \mathbb{N}_{0}\right) \tag{6}
\end{equation*}
$$

This sequence has the generating function

$$
\begin{equation*}
c(x)=\sum_{n=0}^{\infty} C_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x} \tag{7}
\end{equation*}
$$

Definition 1. The Riordan array is an infinite lower-triangular matrix $\mathcal{M}=\left[m_{j, k}\right]$ defined by a pair of generating functions $g(x)=\sum_{k=0}^{\infty} g_{k} x^{k}$ and $f(x)=\sum_{k=1}^{\infty} f_{k} x^{k}$ where $f_{1} \neq 0$, whose k-th column is generated by $g(x) f(x)^{k}$ (the first column being indexed by 0), i.e.

$$
\begin{equation*}
m_{j, k}=\left[x^{j}\right]\left(g(x) f(x)^{k}\right) \quad\left(j, k \in \mathbb{N}_{0}\right) \tag{8}
\end{equation*}
$$

The matrix \mathcal{M} corresponding to the pair of functions f and g is denoted by (g, f) or $\mathcal{R}(g, f)$.
The Riordan group is a set of infinite lower-triangular matrices, where each matrix is defined by a pair of generating functions.

We will consider the transform defined by the Riordan array

$$
\begin{equation*}
\left(c(x), x c^{2}(x)\right) \tag{9}
\end{equation*}
$$

This matrix is the inverse of the Riordan matrix $\left(\frac{1}{1+x}, \frac{x}{(1+x)^{2}}\right)$, which is the coefficient array of the Morgan Voyce polynomials. They are closely linked to the Chebyshev polynomials of the second kind.

The general element $T_{n, k}$ of $\left(c(x), x c^{2}(x)\right)$ is given by (3). This is the sequence A039599 and represents the number of lattice paths from $(0,0)$ to (n, n) with steps $E=(1,0)$ and $N=(0,1)$ which touch but do not cross the line $x-y=k$ and only situated above this line. Also, This sequence appears in the definition of the "Ballot" transform (see [1]).

By the theory of Riordan arrays, the generating function of a_{n} can be evaluated from

$$
\left(c(x), x c^{2}(x)\right) \cdot \frac{1}{1-r x}=\frac{c(x)}{1-r x c^{2}(x)},
$$

i.e.

$$
\begin{equation*}
G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{(r+1) \sqrt{1-4 x}+r-1}{2 r-(r+1)^{2} x} . \tag{10}
\end{equation*}
$$

The function

$$
\begin{equation*}
F(x)=\frac{1}{x} G\left(\frac{1}{x}\right)=\frac{(r+1) \sqrt{1-\frac{4}{x}}+r-1}{2 r x-(r+1)^{2}} \tag{11}
\end{equation*}
$$

will be very useful in the next sections.

3 The properties of number sequences

Notice

$$
\begin{equation*}
T_{n, 0}=C_{n}, \quad T_{n, n}=1, \quad T_{n, k}=0 \quad(k<0 \vee k>n) . \tag{12}
\end{equation*}
$$

The sequence $\left\{T_{n, k}\right\}$ satisfies the next recurrence relation

$$
\begin{equation*}
T_{n, k}=T_{n-1, k-1}+2 T_{n-1, k}+T_{n-1, k+1} \quad(k=0,1, \ldots, n) \tag{13}
\end{equation*}
$$

Let us denote

$$
\begin{equation*}
\zeta=\frac{(r+1)^{2}}{r} \tag{14}
\end{equation*}
$$

Lemma 2. For the sequence $\left\{a_{n}\right\}$, the next recurrence relation is valid

$$
\begin{equation*}
a_{n}=\zeta a_{n-1}-\frac{r+1}{r} C_{n-1} . \tag{15}
\end{equation*}
$$

Proof. We can write

$$
\begin{aligned}
a_{n}-\frac{(r+1)^{2}}{r} a_{n-1}= & a_{n}-r a_{n-1}-2 a_{n-1}-\frac{1}{r} a_{n-1} \\
= & \sum_{k=0}^{n} T_{n, k} r^{k}-\sum_{k=0}^{n-1} T_{n-1, k} r^{k+1}-2 \sum_{k=0}^{n-1} T_{n-1, k} r^{k}-\sum_{k=0}^{n-1} T_{n-1, k} r^{k-1} \\
= & -\frac{1}{r} T_{n-1,0}+\left(T_{n, 0}-2 T_{n-1,0}-T_{n-1,1}\right) \\
& +\sum_{k=1}^{n-2}\left(T_{n, k}-T_{n-1, k-1}-2 T_{n-1, k}-T_{n-1, k+1}\right) r^{k} \\
& +\left(T_{n, n-1}-2 T_{n-1, n-1}-T_{n-1, n-2}\right) r^{n-1}+\left(T_{n, n}-T_{n-1, n-1}\right) r^{n}
\end{aligned}
$$

By using (12) and (13), we finish the proof.

Theorem 3. The sequence $\left\{a_{n}\right\}$ can be represented in the integral form

$$
\begin{equation*}
a_{n}=\frac{r+1}{2 \pi} \int_{0}^{4} \frac{x^{n}}{(r+1)^{2}-r x} \sqrt{\frac{4-x}{x}} d x+\frac{r-1}{r} \zeta^{n} . \tag{16}
\end{equation*}
$$

Proof. We will apply the mathematical induction. Since

$$
\frac{r+1}{2 \pi} \int_{0}^{4} \frac{1}{(r+1)^{2}-r x} \sqrt{\frac{4-x}{x}} d x+\frac{r-1}{r}=1
$$

and $a_{0}=1$, we have that the formula is valid for $n=0$.
Suppose that the formula is true for n. Hence

$$
\zeta a_{n}=\frac{r+1}{2 \pi} \int_{0}^{4} \frac{\zeta x^{n}}{(r+1)^{2}-r x} \sqrt{\frac{4-x}{x}} d x+\frac{r-1}{r} \zeta^{n+1}
$$

Since

$$
\frac{r+1}{r} C_{n}=\frac{r+1}{2 \pi r} \int_{0}^{4} x^{n} \sqrt{\frac{4-x}{x}} d x
$$

we can write

$$
\zeta a_{n}-\frac{r+1}{r} C_{n}=\frac{r+1}{2 \pi} \int_{0}^{4} x^{n}\left(\frac{\zeta}{(r+1)^{2}-r x}-\frac{1}{r}\right) \sqrt{\frac{4-x}{x}} d x+\frac{r-1}{r} \zeta^{n+1} .
$$

By using (15), we get

$$
a_{n+1}=\frac{r+1}{2 \pi} \int_{0}^{4} \frac{x^{n+1}}{(r+1)^{2}-r x} \sqrt{\frac{4-x}{x}} d x+\frac{r-1}{r} \zeta^{n+1},
$$

wherefrom we complete the proof.

4 The Hankel determinants and orthogonal polynomials

Between a few methods for evaluating the Hankel determinants, our attention occupy the method based on the theory of distributions and orthogonal polynomials.

Namely, the Hankel determinant h_{n} of the sequence $\left\{a_{n}\right\}_{n \geq 0}$ equals

$$
\begin{equation*}
h_{n}=a_{0}^{n} \beta_{1}^{n-1} \beta_{2}^{n-2} \cdots \beta_{n-2}^{2} \beta_{n-1} \tag{17}
\end{equation*}
$$

where $\left\{\beta_{n}\right\}_{n \geq 1}$ is the sequence given by:

$$
\begin{equation*}
\mathcal{G}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{a_{0}}{1-\alpha_{0} x-\frac{\beta_{1} x^{2}}{1-\alpha_{1} x-\frac{\beta_{2} x^{2}}{1-\alpha_{2} x-\cdots}}} . \tag{18}
\end{equation*}
$$

The previous sequences $\left\{\alpha_{n}\right\}_{n \geq 0}$ and $\left\{\beta_{n}\right\}_{n \geq 1}$ are the coefficients in the recurrence relation

$$
\begin{equation*}
Q_{n+1}(x)=\left(x-\alpha_{n}\right) Q_{n}(x)-\beta_{n} Q_{n-1}(x) \tag{19}
\end{equation*}
$$

where $\left\{Q_{n}(x)\right\}_{n \geq 0}$ is the monic polynomial sequence orthogonal with respect to the functional \mathcal{U} determined by

$$
\begin{equation*}
a_{n}=\mathcal{U}\left[x^{n}\right] \quad(n=0,1,2, \ldots) . \tag{20}
\end{equation*}
$$

In some cases, it exists weight function $w(x)$ such that the functional \mathcal{U} can be expressed by

$$
\begin{equation*}
\mathcal{U}[f]=\int_{\mathbb{R}} f(x) w(x) d x \quad(f(x) \in C(\mathbb{R}) ; w(x) \geq 0) \tag{21}
\end{equation*}
$$

So, we can join to every weight $w(x)$ two sequences of coefficients, i.e.

$$
\begin{equation*}
w(x) \mapsto\left\{\alpha_{n}, \beta_{n}\right\}_{n \in \mathbb{N}_{0}}, \tag{22}
\end{equation*}
$$

by

$$
\begin{equation*}
\alpha_{n}=\frac{\mathcal{U}\left[x Q_{n}^{2}(x)\right]}{\mathcal{U}\left[Q_{n}^{2}(x)\right]}, \quad \beta_{n}=\frac{\mathcal{U}\left[Q_{n}^{2}(x)\right]}{\mathcal{U}\left[Q_{n-1}^{2}(x)\right]} \quad\left(n \in \mathbb{N}_{0}\right) \tag{23}
\end{equation*}
$$

Finding of the weight function can be started by the function

$$
\begin{equation*}
F(z)=\frac{1}{z} G\left(\frac{1}{z}\right) \tag{24}
\end{equation*}
$$

From the theory of distribution functions (see Chihara [2]), we have Stieltjes inversion function

$$
\begin{equation*}
\psi(t)-\psi(s)=-\frac{1}{\pi} \int_{s}^{t} \Im F(x+i y) d x \tag{25}
\end{equation*}
$$

hence we find the distribution function $\psi(t)$. After differentiation of $\psi(t)$ and simplification of the resulting expression, we finally have $w(x)=\psi^{\prime}(x)$.

The following lemma will be very useful in further discussion.
Lemma 4. Let

$$
\begin{equation*}
w(x) \mapsto\left\{\alpha_{n}, \beta_{n}\right\}_{n \in \mathbb{N}_{0}}, \quad \tilde{w}(x) \mapsto\left\{\tilde{\alpha}_{n}, \quad \tilde{\beta}_{n}\right\}_{n \in \mathbb{N}_{0}} \tag{26}
\end{equation*}
$$

Then

$$
\begin{gather*}
\text { (i) } \tilde{w}(x)=C w(x) \Rightarrow\left\{\tilde{\alpha}_{n}=\alpha_{n}, \quad \tilde{\beta}_{0}=C \beta_{0}, \quad \tilde{\beta}_{n}=\beta_{n}(n \in \mathbb{N})\right\} \tag{27}\\
\text { (ii) } \quad \tilde{w}(x)=w(a x+b) \Rightarrow\left\{\tilde{\alpha}_{n}=\frac{\alpha_{n}-b}{a}, \quad \tilde{\beta}_{0}=\frac{\beta_{0}}{|a|}, \quad \tilde{\beta}_{n}=\frac{\beta_{n}}{a^{2}}(n \in \mathbb{N})\right\} \tag{28}
\end{gather*}
$$

(iii) If

$$
\begin{equation*}
w_{c}(x)=\frac{\tilde{w}(x)}{x-c} \quad(c \notin \operatorname{supp}(\tilde{w})) \tag{29}
\end{equation*}
$$

then

$$
\begin{array}{ll}
\alpha_{c, 0}=\tilde{\alpha}_{0}+r_{0}, & \alpha_{c, k}=\tilde{\alpha}_{k}+r_{k}-r_{k-1}, \\
\beta_{c, 0}=-r_{-1}, & \beta_{c, k}=\tilde{\beta}_{k-1} \frac{r_{k-1}}{r_{k-2}} \tag{30}
\end{array} \quad(k \in \mathbb{N}),
$$

where

$$
\begin{equation*}
r_{-1}=-\int_{\mathbb{R}} w_{c}(x) d x, \quad r_{n}=c-\tilde{\alpha}_{n}-\frac{\tilde{\beta}_{n}}{r_{n-1}} \quad(n=0,1, \ldots) . \tag{31}
\end{equation*}
$$

(iv) If

$$
\begin{equation*}
\hat{w}_{d}(x)=\frac{\tilde{w}(x)}{d-x} \quad(d>x, \forall x \in \operatorname{supp}(\tilde{w})), \tag{32}
\end{equation*}
$$

then

$$
\begin{array}{ll}
\hat{\alpha}_{d, 0}=\tilde{\alpha}_{0}+r_{0}, & \hat{\alpha}_{d, k}=\tilde{\alpha}_{k}+r_{k}-r_{k-1}, \\
\hat{\beta}_{d, 0}=r_{-1}, & \hat{\beta}_{d, k}=\tilde{\beta}_{k-1} \frac{r_{k-1}}{r_{k-2}} \quad(k \in \mathbb{N}), \tag{33}
\end{array}
$$

where

$$
\begin{equation*}
r_{-1}=\int_{\mathbb{R}} \hat{w}_{d}(x) d x, \quad r_{n}=d-\tilde{\alpha}_{n}-\frac{\tilde{\beta}_{n}}{r_{n-1}} \quad(n=0,1, \ldots) . \tag{34}
\end{equation*}
$$

5 The connections of our main problem with classical orthogonal polynomials

From the formula (16), we conclude that the computation of Hankel determinants is directly connected with the monic polynomial sequence $\left\{Q_{n}(x)\right\}$ which is orthogonal with respect to the discrete Sobolev inner product

$$
\begin{equation*}
\tilde{\varphi}(f, g)=\frac{r+1}{2 \pi} \int_{0}^{4} \frac{f(x) g(x)}{(r+1)^{2}-r x} \sqrt{\frac{4-x}{x}} d x+\frac{r-1}{r} f(\zeta) g(\zeta) \quad\left(\zeta=\frac{(r+1)^{2}}{r}\right) \tag{35}
\end{equation*}
$$

We will start with a special Jacobi polynomial $P_{n}(x)=P_{n}^{(1 / 2,-1 / 2)}(x)\left(n \in \mathbb{N}_{0}\right)$, which is also known as the Chebyshev polynomial of the fourth kind. The sequence of these polynomials is orthogonal with respect to

$$
w^{*}(x)=w^{(1 / 2,-1 / 2)}(x)=\sqrt{\frac{1-x}{1+x}}, \quad x \in(-1,1)
$$

They satisfy the three-term recurrence relation (Chihara [2]):

$$
P_{n+1}(x)=\left(x-\alpha_{n}^{*}\right) P_{n}(x)-\beta_{n}^{*} P_{n-1}(x) \quad\left(n \in \mathbb{N}_{0}\right), \quad P_{-1}(x)=0, \quad P_{0}(x)=1,
$$

where

$$
\alpha_{0}^{*}=-\frac{1}{2}, \quad \alpha_{n}^{*}=0, \quad \beta_{0}^{*}=\pi, \quad \beta_{n}^{*}=\frac{1}{4} \quad(n \in \mathbb{N}) .
$$

For the weight function

$$
\begin{equation*}
\tilde{w}(x)=w\left(\frac{x}{2}-1\right)=\sqrt{\frac{4-x}{x}}, \quad x \in(0,4) \tag{36}
\end{equation*}
$$

applying Lemma $4(i i)$ with $a=1 / 2$ and $b=-1$, we find coefficients

$$
\tilde{\alpha}_{0}=1, \quad \tilde{\alpha}_{n}=2 \quad(n \geq 1) \quad \tilde{\beta}_{0}=2 \pi, \quad \tilde{\beta}_{n}=1 \quad(n \geq 1)
$$

Further, we will define the weight function

$$
\hat{w}(x)=\frac{\tilde{w}(x)}{\frac{(r+1)^{2}}{r}-x}=\frac{1}{\frac{(r+1)^{2}}{r}-x} \sqrt{\frac{4-x}{x}}, \quad x \in(0,4) .
$$

Since $d=(r+1)^{2} / r>4$ for $r>0$, we can apply the case (iv) from Lemma 4. So, we find

$$
r_{-1}=\frac{2 \pi}{r+1}, \quad r_{n}=\frac{1}{r} \quad\left(n \in \mathbb{N}_{0}\right) .
$$

Hence

$$
\hat{\alpha}_{0}=\frac{r+1}{r}, \quad \hat{\alpha}_{k}=2 \quad(k \in \mathbb{N}), \quad \hat{\beta}_{0}=\frac{2 \pi}{r+1}, \quad \hat{\beta}_{1}=\frac{r+1}{r}, \quad \hat{\beta}_{k}=1 \quad(k \in \mathbb{N} ; k \geq 2) .
$$

Finally, let us denote with $\left\{S_{n}(x)\right\}$ the sequence of monic polynomials orthogonal with respect to the inner product

$$
\begin{equation*}
\varphi(f, g)=\int_{\mathbb{R}} f(x) g(x) w(x) d x \tag{37}
\end{equation*}
$$

where the weight $w(x)$ is defined by

$$
\begin{equation*}
w(x)=\frac{r+1}{2 \pi r} \hat{w}(x)=\frac{r+1}{2 \pi r} \cdot \frac{1}{(r+1)^{2}-r x} \sqrt{\frac{4-x}{x}}, \quad x \in(0,4) . \tag{38}
\end{equation*}
$$

Applying the case (i) from Lemma 4, we find

$$
\alpha_{0}=\frac{r+1}{r}, \quad \alpha_{k}=2(k \in \mathbb{N}), \quad \beta_{0}=\frac{1}{r}, \quad \beta_{1}=\frac{r+1}{r}, \quad \beta_{k}=1(k \in \mathbb{N} ; k \geq 2) .
$$

Their squared norms are

$$
\begin{equation*}
\varphi\left(S_{0}, S_{0}\right)=\frac{1}{r}, \quad \varphi\left(S_{n}, S_{n}\right)=\beta_{n} \beta_{n-1} \ldots \beta_{0}=\frac{r+1}{r^{2}} \quad(n \in \mathbb{N}) \tag{39}
\end{equation*}
$$

6 The connection with polynomials orthogonal with respect to a discrete Sobolev inner product

Here, we will recall the results from the paper [8] for $\lambda=r /(r-1)$ and $c=\zeta$.
The sequence of monic polynomials $\left\{Q_{n}(x)\right\}$ orthogonal with respect to the inner product

$$
\begin{equation*}
\tilde{\varphi}(f, g)=\varphi(f, g)+\frac{1}{\lambda} f(c) g(c), \tag{40}
\end{equation*}
$$

is quite determined by $\left\{S_{n}(x)\right\}, \lambda$ and c.

Lemma 5. The polynomials $\left\{Q_{n}(x)\right\}$ satisfy three-term recurrence relation of the form:

$$
\begin{equation*}
Q_{n+1}(x)=\left(x-\sigma_{n}\right) Q_{n}(x)-\tau_{n} Q_{n-1}(x) \quad(n \in \mathbb{N}), \quad Q_{-1}(x)=0, Q_{0}(x)=1 \tag{41}
\end{equation*}
$$

The first few members of the sequence $\left\{Q_{n}(x)\right\}$ are:

$$
Q_{0}(x)=1, \quad Q_{1}(x)=x-(r+1), \quad Q_{2}(x)=x^{2}-(r+3) x+(r+1)
$$

Hence $\tau_{0}=\mu_{0}=1$ and $\tau_{1}=r+1$.
Lemma 6. The polynomials $\left\{S_{n}(x)\right\}$ at the point ζ have the following values:

$$
\begin{equation*}
S_{0}(\zeta)=1, \quad S_{n}(\zeta)=(r+1) \cdot r^{n-1} \quad(n \in \mathbb{N}) \tag{42}
\end{equation*}
$$

Proof. It can be proven by mathematical induction.
Let us denote by

$$
K_{m}(c, d)=\sum_{j=0}^{m} \frac{S_{j}(c) S_{j}(d)}{\varphi\left(S_{j}, S_{j}\right)}, \quad \lambda_{m}=1+\frac{K_{m}(c, c)}{\lambda} \quad(m \in \mathbb{N})
$$

Here, it is

$$
K_{m}(\zeta, \zeta)=r\left(r^{2 m+1}-1\right), \quad \lambda_{m}=r^{2 m+1} \quad(m \in \mathbb{N})
$$

Also, in the paper ([8]), it is proven that

$$
\begin{equation*}
\tilde{\varphi}\left(Q_{n}, Q_{n}\right)=\varphi\left(S_{n}, S_{n}\right) \frac{\lambda_{n}}{\lambda_{n-1}} \quad(n \in \mathbb{N} ; n \geq 2) \tag{43}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\tilde{\varphi}\left(Q_{0}, Q_{0}\right)=1, \quad \tilde{\varphi}\left(Q_{1}, Q_{1}\right)=r+1, \quad \tilde{\varphi}\left(Q_{n}, Q_{n}\right)=r+1 \quad(n \in \mathbb{N} ; n \geq 2) \tag{44}
\end{equation*}
$$

Since $\tilde{\varphi}\left(Q_{n}, Q_{n}\right)=\tau_{n} \tau_{n-1} \ldots \tau_{1} \tau_{0}$, we have

$$
\tau_{0}=1, \quad \tau_{1}=r+1, \quad \tau_{n}=1 \quad(n \in \mathbb{N} ; n \geq 2)
$$

Now, we have all elements for formula (17) and we can compute h_{n} by

$$
h_{n}=\mu_{0}^{n} \tau_{1}^{n-1} \tau_{2}^{n-2} \cdots \tau_{n-2}^{2} \tau_{n-1}
$$

Theorem 7. The Hankel transform of the sequence $\left\{a_{n}\right\}$ defined by (2) is

$$
h_{n}=(r+1)^{n-1} \quad(n \in \mathbb{N}) .
$$

Acknowledgements. This research was supported by the Science Foundation of Republic Serbia, Project No. 144023 and Project No. 144011.

References

[1] P.Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5
[2] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[3] A. Cvetković, P. Rajković and M. Ivković, Catalan Numbers, the Hankel Transform and Fibonacci Numbers, Journal of Integer Sequences 5 (2002) Article 02.1.3.
[4] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press - Oxford, 2003.
[5] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959) 336-354.
[6] C. Krattenthaler, Advanced determinant calculus: A complement, Linear Algebra and its Applications 411 (2005) 68-166.
[7] J.W. Layman, The Hankel Transform and Some of its Properties, Journal of Integer Sequences, Vol. 4 (2001), Article 01.1.5
[8] F. Marcellan, A. Ronveaux, On a class of polynomials orthogonal with respect to a discrete Sobolev inner product, Indag. Mathem., N.S. 1 (1990) 451-464.
[9] P.M. Rajković, M.D. Petković, P. Barry The Hankel Transform of the Sum of Consecutive Generalized Catalan Numbers, Integral Transforms and Special Functions, 18 No. 4 (2007) 285-296.
[10] Sloane NJA. The On-Line Encyclopedia of Integer Sequences, Published electronically at http://www.research.att.com/~njas/sequences/, 2007.

