An application of Sobolev orthogonal polynomials
in the computing of a special Hankel determinant
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Abstract. Many Hankel determinants computations arising in combinatorial analysis, can
be done by results from the theory of standard orthogonal polynomials. Here, we will
emphasize a special sequence which requires including of discrete Sobolov orthogonality in
order to find their closed form.

1 Introduction

The Hankel transform of a given number sequence A is the sequence of Hankel determinants
H given by
A={antneny, — H={hntneny i Thn =laij2li e (1)

This term is first used by J.W. Layman [7]. There is close connection of evaluations of The
closed-form computation of Hankel determinants is of great combinatorial interest related
to partitions and permutations. A lot of methods is known for evaluation of these determi-
nants a long list of known determinant evaluations can be seen in [6]. We also found a few
interesting results exposed in [3] and [9].

Here, we will consider the sequence A whose arbitrary element is

Ay = Z ka’f’k (T € Z), (2)
k=0

where

2n 2n 2k +1 2n
T = B =7 <k <mn; _

We will imply that 7, , = 0 in other cases.
The first members of A and its Hankel transform are:

A={1,1+47243r+r*5+9r+5+7° ...}, H={L14r (147> 1+7r)7...}.

Our purpose is to prove that, in general, it is valid h,, = (1 +r)"" L.



2 Preliminaries

The ordinary generating function of the sequence a,, is the power series
flz) = Z a,x", with a, = [z"]f(z), (4)
n=0

where the operator [z"] extracts the coefficient of z”. Sequences are often referred to by
their A’ number in the On-Line Encyclopedia of Integer Sequences [10].
Let us remand that the sequence of Catalan numbers

= (2"> (n € No) (5)

:n+1 n

can be written in the integral form

1 [, JA—x
Cn—%/ox Vol (e ) (6)

This sequence has the generating function

5 (7)

- 1—y1-4
c(z) = ZC’nx" S
n=0
Definition 1. The Riordan array is an infinite lower-triangular matrix M = [m, ;] defined
by a pair of generating functions g(z) = Y ;7 gra® and f(z) = > 7o, fra® where fi # 0,
whose k-th column is generated by g(x)f(x)* (the first column being indexed by 0), i.e.

mix =[] (g(x) f(2)*)  (j,k € No). (8)

The matrix M corresponding to the pair of functions f and g is denoted by (g, f) or R(g, f)-
The Riordan group is a set of infinite lower-triangular matrices, where each matrix is
defined by a pair of generating functions.

We will consider the transform defined by the Riordan array

(c(x), xc2(:v)) ) (9)

14%90’ ﬁ), which is the coefficient array
of the Morgan Voyce polynomials. They are closely linked to the Chebyshev polynomials of
the second kind.

The general element T;, ;. of (c(x), zc*(x)) is given by (3). This is the sequence [A039599
and represents the number of lattice paths from (0,0) to (n,n) with steps £ = (1,0) and
N = (0,1) which touch but do not cross the line z —y = k and only situated above this line.

Also, This sequence appears in the definition of the "Ballot” transform (see [1]).

This matrix is the inverse of the Riordan matrix


http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A039599�

By the theory of Riordan arrays, the generating function of a,, can be evaluated from

o c(x)
1—rz  1—racX(z)

(c(x), zc? (93))

Y

le.
00 = S = OV VT 47
o " 2r — (r+1)2%x '
The function
(r+1)4/1-24r—1
Fir) =L 0(2) =

2re — (r+1)2

will be very useful in the next sections.

3 The properties of number sequences

Notice
Tn,O = Cn7 Tn,n - 1, Tn7k - 0 (k < O V k > 77,)

The sequence {T,,;} satisfies the next recurrence relation

Tn,k = Tnfl,kfl + 2Tn71,k + Tnfl,kJrl (k = 07 17 e 7n>'

Let us denote

Lemma 2. For the sequence {a,}, the next recurrence relation is valid

r+1

Ap = C ap—-1 — Ch-1 .
Proof. We can write
(r+1)?
Ap — r Up1=0Qp — T Ap_1 — 2 Qp_1 — ; an—1

n —1

S

k= k=0
1
= —dn-10 + (Tho — 27010 — Tn71,1>
n—2
+ ) Tk = Tuer s = 2Tn1 e — Tomy i)
k=1

+ (Tn,n—l - 2Tn—1,n—1 - Tn—l,n—2>rn_1 + (Tn,n

By using (12) and (13), we finish the proof. O

n—1 n—1
_ k E : k+1 E k § k—1
- ka?" - Tnfl,kr -2 Tnfl,kr - Tnfl,k"n
0 k=0 k=0

n
- Tn—l,n—l)r

(10)

(11)

(12)

(13)

(14)

(15)



Theorem 3. The sequence {a,} can be represented in the integral form

r+1 [* " 4—x r—1
= N d " 16
¢ 27 /0 (r+1)?—rx x v r ¢ (16)

Proof. We will apply the mathematical induction. Since

r+1 [* 1 4—x r—1
dx + =1,
2n Jo (r+1)2—rx x r

and ag = 1, we have that the formula is valid for n = 0.
Suppose that the formula is true for n. Hence

r+1 [4 Ca™ 4—x r—1
= d ntl
Ca 27r/0(r+1)2—7"x\/ T T r ¢
7“—1—1 _r—i—l/
T N &
we can write

r+1 r4+1 (4 ¢ 1 4—x r—1
Ll (S 1y [,
Ca r or /Oa: (r+12—-rz r x T r ¢

By using (15), we get

r+1 [* v tl 4—z r—1
" — d n+1
Int1 o /0 (r+12—rz \V 2 T r ¢ ’

wherefrom we complete the proof. O

Since

dx

4 The Hankel determinants
and orthogonal polynomials

Between a few methods for evaluating the Hankel determinants, our attention occupy the
method based on the theory of distributions and orthogonal polynomials.
Namely, the Hankel determinant h,, of the sequence {a, },>¢ equals

h = aoﬁ e 52—2671—1 ) (17)
where {f3,,},>1 is the sequence given by:

G(z) =Y ana" = a0 . (18)

2

x
n=0 1 —apx — b 5
Bax

1—oajz—
! I —or—---




The previous sequences {a, }n>0 and {3, },>1 are the coefficients in the recurrence relation

Qn+1<I) = (SL’ - an)Qn(m) - ﬁnanl(x) ) (19>

where {Q,,(x) }n>0 is the monic polynomial sequence orthogonal with respect to the functional
U determined by
a, =Uz"] (n=0,1,2,...). (20)

In some cases, it exists weight function w(x) such that the functional U can be expressed by

uls) = [ f@) ww) de - (f(a) € OR): w(a) 2 0) (21)
So, we can join to every weight w(x) two sequences of coefficients, i.e.
w(x) = {Oén, 6n}n€No ) (22)
" o Q3a) @)
U Qi) U@
i) T uey )

Finding of the weight function can be started by the function
Flz)=1a(h) . (24)

From the theory of distribution functions (see Chihara [2]), we have Stieltjes inversion func-
tion -

0(0) () = / SF(x + iy)de. (25)
hence we find the distribution function ¢ (t). After differentiation of ¢ (¢) and simplification
of the resulting expression, we finally have w(z) = ¢'(z).

The following lemma will be very useful in further discussion.

Lemma 4. Let

w@) = {an, Bulneng,  B(x) = {Gn Butnens - (26)
Then
(i)  w(x)=Cw() = {an=an B=Ch, B=0 neN}; (27
() ) =wl+h) > {a =T Gt G- Emem): 9
(iii) If )
wle) = 2 (o g suppla)) (29



then

Qo = Qo+ 7o , Qe = Qg+ Tp — Tp—1,
~ T 30
Beo = —r_1, Bek = 6]6712 (keN), (30)
Tk—2
where ~
rlz—/wc(x) dx, Ty =C— Oy — On (n=0,1,...). (31)
R T'n—1
(iv) If
we(x) = ;Uixl (d >z, Vx € supp(w)) , (32)
then . B
Qg = Qg+ 19, Qg = O +Tp — Th_1,
. A < T 33
Bao = 1_1, Bak = Bra—— (keN), (33)
Tk—2
where ~
r_lz/wd(x) v, m—d—dn— " m=01,.). (34)
R T'n—1

5 The connections of our main problem
with classical orthogonal polynomials

From the formula (16)), we conclude that the computation of Hankel determinants is directly

connected with the monic polynomial sequence {@, (x)} which is orthogonal with respect to
the discrete Sobolev inner product

s = [ At T g0 (o= ) o

We will start with a special Jacobi polynomial P,(x) = piETA) (x) (n € Np), which is also
known as the Chebyshev polynomial of the fourth kind. The sequence of these polynomials
is orthogonal with respect to

1—
wH(z) = w212 (g) = /1Jr T ze(-11).
T

They satisfy the three-term recurrence relation (Chihara [2]):

Poa(z) = (. — ay) Pu(z) = B, Pua(z)  (n € Ny), Pa(x)=0, PFR)=1,

where .
ag=—=, a =0, By =, ﬁ;:Z (neN).

For the weight function

= , z e (0,4), (36)



applying Lemma 4(i7) with a = 1/2 and b = —1, we find coefficients
ap=1, a,=2 (n>1) Go=2r, Bo=1 (n>1).
Further, we will define the weight function

. w(x) 1 4—x
= = 0,4) .
w(x) = (Ttl)Q—:B — z € (0,4)

Since d = (r +1)?/r > 4 for r > 0, we can apply the case (iv) from Lemma 4. So, we find

2 1
r_q T r . (n € Np)
Hence
1 A 2 A 1 A
Go="0= =2 (keN), f=—— Hh=""2 B=1 (keNk>2)
r r+1 r

Finally, let us denote with {S,(x)} the sequence of monic polynomials orthogonal with
respect to the inner product

olf.0) = [ F@gla) wle) do (37)
where the weight w(z) is defined by
w(z) = T2jr—7"1 () = T;;rl (r+ 1)12 —rx : ; - ’ v€(0.4). (38)
Applying the case (i) from Lemma 4, we find
aozrjl C ap=2(keN), 50:%, 51:7”;1 L Be=1(keN;k>2)
Their squared norms are
©(So, So) = % , ©(Sn, Sn) = Pnbu-1...0o = T:; ! (neN). (39)

6 The connection with polynomials orthogonal
with respect to a discrete Sobolev inner product

Here, we will recall the results from the paper [§] for A =r/(r — 1) and ¢ = (.
The sequence of monic polynomials {@Q,,(z)} orthogonal with respect to the inner product

Bf, 9)=e(f.0) + 3/()a(c) (40)
is quite determined by {S,(x)}, A and c.



Lemma 5. The polynomials {Q,(x)} satisfy three-term recurrence relation of the form:
Qni1(7) = (= 00)Qn(7) = TaQna(z) (n€N),  Qa(r) =0, Qo(z) =1.  (41)
The first few members of the sequence {Q,(x)} are:
Qo(x) =1, Qi(z)=z—(r+1), Quz)=2—(r+3)z+(r+1).
Hence 79 = o =1 and 7y =r + 1.
Lemma 6. The polynomials {S,(x)} at the point ¢ have the following values:
SO =1,  SuQ=(r+1)-"" (neN). (42)

Proof. Tt can be proven by mathematical induction. O
Let us denote by

Km(c,d):z()%, /\m:1+w (meN) .

Here, it is
Kn(C, Q) =7 =1),  Ap=r"" (meN).

Also, in the paper ([8]), it is proven that

An
)\n—l

P(Qn, Qn) = ©(Sn, Sn)
Hence
P(Qo, Qo) =1, §(Q1, Q1) =7r+1, ¢(Qn@n)=r+1 (neN; n>2).  (44)
Since @(Qn, Qn) = TyTn_1 ... T1To, We have
=1 m=r-+1, T.=1 (neN; n>2).
Now, we have all elements for formula (17) and we can compute h,, by
b= 1T TR
Theorem 7. The Hankel transform of the sequence {a,} defined by (2) is

hp=(r+1)"" (neN) .

Acknowledgements. This research was supported by the Science Foundation of Re-
public Serbia, Project No. 144023 and Project No. 144011.



References

1]

2]

[10]

P.Barry, A Catalan Transform and Related Transformations on Integer Sequences, Jour-
nal of Integer Sequences, Vol. 8 (2005), Article 05.4.5

T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New
York, 1978.

A. Cvetkovi¢, P. Rajkovi¢ and M. Ivkovié¢, Catalan Numbers, the Hankel Transform and
Fibonacci Numbers, Journal of Integer Sequences 5 (2002) Article 02.1.3.

W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon
Press - Oxford, 2003.

H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959)
336-354.

C. Krattenthaler, Advanced determinant calculus: A complement, Linear Algebra and
its Applications 411 (2005) 68-166.

J.W. Layman, The Hankel Transform and Some of its Properties, Journal of Integer
Sequences, Vol. 4 (2001), Article 01.1.5

F. Marcellan, A. Ronveaux, On a class of polynomials orthogonal with respect to a
discrete Sobolev inner product, Indag. Mathem., N.S. 1 (1990) 451-464.

P.M. Rajkovi¢, M.D. Petkovi¢, P. Barry The Hankel Transform of the Sum of Consec-
utive Generalized Catalan Numbers, Integral Transforms and Special Functions, 18 No.
4 (2007) 285-296.

Sloane NJA. The On-Line Encyclopedia of Integer Sequences, Published electronically
at http://www.research.att.com/~njas/sequences/, 2007.



