A generalization of the concept of q-fractional integrals

Predrag M. RAJKOVIĆ ${ }^{1}$,
Faculty of Mechanical Engineering, University of Niš, 18000 Niš, Serbia,
E-mail: pedja.rajk@yahoo.com
Slađana D. MARINKOVIĆ,
Faculty of Electronic Engineering, University of Niš, 18000 Niš, Serbia,
E-mail: sladjana@elfak.ni.ac.yu
Miomir S. STANKOVIĆ,
Faculty of Occupational Safety, University of Niš, 18000 Niš, Serbia, E-mail: miomir.stankovic@gmail.com

Abstract

In this paper, we consider the fractional q-integral with variable lower limit of integration. We prove the semigroup property of these integrals, and a formula of Leibniz type. Finally, we evaluate fractional q-integrals of some functions. The consideration of q-exponential function in that sense leads to q-analogs of Mittag-Leffler function. Keywords Basic hypergeometric functions, q-integral, q-derivative, fractional integrals, Mittag-Leffler function MSC classification 33D60, 26A33.

[^0]Corresponding author:
Predrag M. RAJKOVIĆ,
Faculty of Mechanical Engineering, University of Niš, 18000 Niš, Serbia, E-mail: pedja.rajk@yahoo.com

1 Introduction

The fractional calculus is a very suitable tool in describing and solving a lot of problems in sciences, such as physics, electromagnetics, acoustics, viscoelasticity, electrochemistry and material science (see, for example [10]). Of course, for mathematics itself it provides new possibilities such as it is emphasized in [7], [9] and [13]. Their treatment from the point of view of q-calculus can open new perspectives (for example, see [5]).

We begin by recalling a few basic facts [8]. The q-integral is defined by

$$
\begin{equation*}
\left(I_{q, 0} f\right)(x)=\int_{0}^{x} f(t) d_{q} t=x(1-q) \sum_{k=0}^{\infty} f\left(x q^{k}\right) q^{k} \quad(0 \leq|q|<1) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I_{q, a} f\right)(x)=\int_{a}^{x} f(t) d_{q} t=\int_{0}^{x} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t \tag{2}
\end{equation*}
$$

When the lower limit of integration is $a=x q^{n}$, the q-integral (2) becomes

$$
\begin{equation*}
\int_{x q^{n}}^{x} f(t) d_{q} t=x(1-q) \sum_{k=0}^{n-1} f\left(x q^{k}\right) q^{k} \tag{3}
\end{equation*}
$$

We define the iterated q-integral operator $I_{q, a}^{n}$ by

$$
I_{q, a}^{0} f=f, \quad I_{q, a}^{n} f=I_{q, a}\left(I_{q, a}^{n-1} f\right) \quad(n=1,2,3, \ldots)
$$

This can be written in the following form:

$$
\left(I_{q, a}^{n} f\right)(x)=\int_{a}^{x} d_{q} t \int_{a}^{t} d_{q} t_{n-1} \int_{a}^{t_{n-1}} d_{q} t_{n-2} \cdots \int_{a}^{t_{2}} f\left(t_{1}\right) d_{q} t_{1}
$$

The reduction of this iterated q-integral to a single integral was considered by Al-Salam [3] as a q-analog of Cauchy's formula

$$
\begin{equation*}
\left(I_{q, a}^{n} f\right)(x)=\frac{x^{n-1}}{[n-1]_{q}!} \int_{a}^{x}(q t / x ; q)_{n-1} f(t) d_{q} t \quad(n \in \mathbb{N}) \tag{4}
\end{equation*}
$$

Al-Salam [2] and Agarwal [1] introduced several types of fractional q-integral operators and fractional q-derivatives, always with the lower limit of integration being 0 . Here, we will only mention the following q-analog of the Erdélyi-Kober operator:

$$
\left(\mathcal{I}_{q}^{\eta, \alpha} f\right)(x)=\frac{x^{-(\eta+1)}}{\Gamma_{q}(\alpha)} \int_{0}^{x}(q t / x ; q)_{\alpha-1} t^{\eta} f(t) d_{q} t \quad\left(\eta, \alpha \in \mathbb{R}^{+}\right)
$$

However, in some considerations, such as the construction of a q-Taylor formula or solving of q-differential equation of fractional order, it is of interest to allow
that the lower limit of integration is nonzero. Therefore, we define the fractional q-integral by

$$
\left(I_{q, a}^{\alpha} f\right)(x)=\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} \int_{a}^{x}(q t / x ; q)_{\alpha-1} f(t) d_{q} t \quad\left(\alpha \in \mathbb{R}^{+}\right)
$$

The relationship between these fractional q-integrals is

$$
\left(I_{q, 0}^{\alpha} f\right)(x)=x^{\alpha}\left(\mathcal{I}_{q}^{0, \alpha} f\right)(x)
$$

The permission for the lower limit of integration to take some nonzero value, makes fractional q-calculus even more difficult (see [11]).

In this paper, our purpose is to consider fractional q-integrals with the parametric lower limit of integration. After preliminaries, we present some properties of the q-shifted factorials used in the other sections. In the main parts of the paper, we define the fractional q-integral and the fractional q-derivative and study their properties. In the final section, we derive the fractional q-integrals and q-derivatives of some elementary functions.

2 Preliminaries

In the theory of q-calculus (see [8]), for a real parameter $q \in \mathbb{R}^{+} \backslash\{1\}$, we introduce a q-real number $[a]_{q}$ and q-shifted factorial by

$$
[a]_{q}:=\frac{1-q^{a}}{1-q}, \quad(a ; q)_{k}=\prod_{i=0}^{k-1}\left(1-a q^{i}\right) \quad(a \in \mathbb{R}, k \in \mathbb{N} \cup\{\infty\})
$$

Its natural extension to the reals is

$$
\begin{equation*}
(a ; q)_{\alpha}=\frac{(a ; q)_{\infty}}{\left(a q^{\alpha} ; q\right)_{\infty}} \quad(\alpha \in \mathbb{R}) \tag{5}
\end{equation*}
$$

Also, the q-binomial coefficient is given by

$$
\left[\begin{array}{l}
\alpha \tag{6}\\
k
\end{array}\right]_{q}=\frac{\left(q^{-\alpha} ; q\right)_{k}}{(q ; q)_{k}}(-1)^{k} q^{\alpha k} q^{-\binom{k}{2}} \quad(k \in \mathbb{N}, \alpha \in \mathbb{R})
$$

The following formulas (see, for example, [8] and [4]) will be useful:

$$
\begin{align*}
(\mu ; q)_{n} & =\left(q^{1-n} / \mu ; q\right)_{n}(-1)^{n} \mu^{n} q^{\binom{n}{2}}, \tag{7}\\
\frac{\left(\mu q^{-n} ; q\right)_{n}}{\left(\nu q^{-n} ; q\right)_{n}} & =\frac{(q / \mu ; q)_{n}}{(q / \nu ; q)_{n}}\left(\frac{\mu}{\nu}\right)^{n}, \tag{8}\\
(\mu ; q)_{\alpha} & =\sum_{n=0}^{\infty}(-1)^{n}\left[\begin{array}{l}
\alpha \\
n
\end{array}\right]_{q} q^{\binom{n}{2}} \mu^{n} \tag{9}\\
(\mu ; q)_{\alpha+n} & =\left(\mu q^{\alpha} ; q\right)_{n}(\mu ; q)_{\alpha} \tag{10}\\
\frac{\left(\mu q^{k} ; q\right)_{\alpha}}{(\mu ; q)_{\alpha}} & =\frac{\left(\mu q^{\alpha} ; q\right)_{k}}{(\mu ; q)_{k}} \tag{11}\\
\left(q^{k-n} ; q\right)_{\alpha} & =0 \quad(n, k \in \mathbb{N}, n \geq k ; \mu, \nu, \alpha \in \mathbb{R}) . \tag{12}
\end{align*}
$$

The q-gamma function is defined by

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x} \quad(x \in \mathbb{R} \backslash\{0,-1,-2, \ldots\}) \tag{13}
\end{equation*}
$$

and obviously,

$$
\begin{equation*}
\Gamma_{q}(x+1)=[x]_{q} \Gamma_{q}(x), \quad \Gamma_{q}(x)=(q ; q)_{x-1}(1-q)^{1-x} \tag{14}
\end{equation*}
$$

The q-hypergeometric function [8] is defined as

$$
{ }_{2} \phi_{1}\left(\left.\begin{array}{c}
a, b \\
c
\end{array} \right\rvert\, q ; x\right)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}(b ; q)_{n}}{(c ; q)_{n}(q ; q)_{n}} x^{n}
$$

The Heine transformation formula is:

$$
{ }_{2} \phi_{1}\left(\left.\begin{array}{c|}
a, b \tag{15}\\
c
\end{array} \right\rvert\, q ; x\right)=\frac{(a b x / c ; q)_{\infty}}{(x ; q)_{\infty}}{ }_{2} \phi_{1}\left(\left.\begin{array}{c}
c / a, c / b \\
c
\end{array} \right\rvert\, q ; a b x / c\right) .
$$

The q-derivative of a function $f(x)$ is defined by

$$
\left(D_{q} f\right)(x)=\frac{f(x)-f(q x)}{x-q x} \quad(x \neq 0), \quad\left(D_{q} f\right)(0)=\lim _{x \rightarrow 0}\left(D_{q} f\right)(x)
$$

and the q-derivatives of higher order as follows:

$$
\begin{equation*}
D_{q}^{0} f=f, \quad D_{q}^{n} f=D_{q}\left(D_{q}^{n-1} f\right) \quad(n=1,2,3, \ldots) \tag{16}
\end{equation*}
$$

For an arbitrary pair of functions $u(x)$ and $v(x)$ and constants $\alpha, \beta \in \mathbb{R}$, we have linearity and product rules, as

$$
\begin{aligned}
D_{q}(\alpha u(x)+\beta v(x)) & =\alpha\left(D_{q} u\right)(x)+\beta\left(D_{q} v\right)(x), \\
D_{q}(u(x) \cdot v(x)) & =u(q x)\left(D_{q} v\right)(x)+v(x)\left(D_{q} u\right)(x) .
\end{aligned}
$$

In this paper, the q-derivatives of the next functions are very useful examples:

$$
\begin{align*}
D_{q}\left(x^{\lambda}(a / x ; q)_{\lambda}\right) & =[\lambda]_{q} x^{\lambda-1}(a / x ; q)_{\lambda-1} \tag{17}\\
D_{q}\left(a^{\lambda}(x / a ; q)_{\lambda}\right) & =-[\lambda]_{q} a^{\lambda-1}(q x / a ; q)_{\lambda-1} \tag{18}\\
D_{q}\left(x^{\lambda}\right) & =[\lambda]_{q} x^{\lambda-1} \tag{19}
\end{align*}
$$

For the q-integral and q-derivative operators the following relations are valid:

$$
\begin{gather*}
\left(D_{q}^{n} I_{q, a}^{n} f\right)(x)=f(x) \quad(n \in \mathbb{N}), \tag{20}\\
\left(I_{q, a}^{n} D_{q}^{n} f\right)(x)=f(x)-\sum_{k=0}^{n-1} \frac{\left(D_{q}^{k} f\right)(a)}{[k]_{q}!} x^{k}(a / x ; q)_{k} \quad(n \in \mathbb{N}) \tag{21}
\end{gather*}
$$

The formula for q-integration by parts is

$$
\begin{equation*}
\int_{a}^{b} u(x)\left(D_{q} v\right)(x) d_{q} x=[u(x) v(x)]_{a}^{b}-\int_{a}^{b} v(q x)\left(D_{q} u\right)(x) d_{q} x \tag{22}
\end{equation*}
$$

3 Some useful properties of q-shifted factorials

The following result will be used in proving the semigroup property of the fractional q-integral.

Let us denote

$$
\begin{equation*}
S(\alpha, \beta, \mu)=\sum_{n=0}^{\infty} \frac{\left(\mu q^{1-n} ; q\right)_{\alpha-1}\left(q^{1+n} ; q\right)_{\beta-1}}{(q ; q)_{\alpha-1}(q ; q)_{\beta-1}} q^{\alpha n} \tag{23}
\end{equation*}
$$

Lemma 1 For $\mu, \alpha, \beta \in \mathbb{R}^{+}$the following recurrence relations are valid ${ }^{2}$:

$$
\begin{aligned}
\left(1-q^{\alpha+\beta-1}\right) S(\alpha, \beta, \mu)-\left(1-\mu q^{\alpha+\beta-1}\right) S(\alpha-1, \beta, \mu) & =0 \\
\left(1-q^{\alpha+\beta-1}\right) S(\alpha, \beta, \mu)-\left(1-\mu q^{\alpha+\beta-1}\right) S(\alpha, \beta-1, \mu) & =0 \\
q\left(1-q^{\alpha+\beta-1}\right) S(\alpha, \beta, \mu)+(1-q)(1-\mu q) D_{q, \mu} S(\alpha, \beta, \mu) & =0 .
\end{aligned}
$$

Lemma 2 For $\mu, \alpha, \beta \in \mathbb{R}^{+}$, the following identity holds:

$$
\begin{equation*}
S(\alpha, \beta, \mu)=\frac{(\mu q ; q)_{\alpha+\beta-1}}{(q ; q)_{\alpha+\beta-1}} \tag{24}
\end{equation*}
$$

Proof. According to formulas (5) and (8), we have

$$
\begin{aligned}
\left(\mu q^{1-n} ; q\right)_{\alpha-1} & =\frac{\left(\mu q^{1-n} ; q\right)_{\infty}}{\left(\mu q^{\alpha-n} ; q\right)_{\infty}}=\frac{\left(\mu q^{1-n} ; q\right)_{n}(\mu q ; q)_{\infty}}{\left(\mu q^{\alpha-n} ; q\right)_{n}\left(\mu q^{\alpha} ; q\right)_{\infty}} \\
& =(\mu q ; q)_{\alpha-1} \frac{\left(\mu^{-1} ; q\right)_{n}}{\left(\mu^{-1} q^{1-\alpha} ; q\right)_{n}} q^{(1-\alpha) n}
\end{aligned}
$$

By applying identity (11) to the expression $\left(q^{1+n} ; q\right)_{\beta-1} /(q ; q)_{\beta-1}$, we can write $S(\alpha, \beta, \mu)$ in the form

$$
\begin{aligned}
S(\alpha, \beta, \mu) & =\frac{(\mu q ; q)_{\alpha-1}}{(q ; q)_{\alpha-1}} \sum_{n=0}^{\infty} \frac{\left(q^{\beta} ; q\right)_{n}}{(q ; q)_{n}} \frac{\left(\mu^{-1} ; q\right)_{n}}{\left(\mu^{-1} q^{1-\alpha} ; q\right)_{n}} q^{(1-\alpha) n} q^{\alpha n} \\
& =\frac{(\mu q ; q)_{\alpha-1}}{(q ; q)_{\alpha-1}}{ }_{2} \phi_{1}\left(\left.\begin{array}{c}
\mu^{-1}, q^{\beta} \\
\mu^{-1} q^{1-\alpha}
\end{array} \right\rvert\, q ; q\right)
\end{aligned}
$$

By using (15), we get

$$
\begin{aligned}
S(\alpha, \beta, \mu) & =\frac{(\mu q ; q)_{\alpha-1}}{(q ; q)_{\alpha-1}} \frac{\left(q^{\alpha+\beta} ; q\right)_{\infty}}{(q ; q)_{\infty}}{ }_{2} \phi_{1}\left(\left.\begin{array}{c}
q^{1-\alpha}, \mu^{-1} q^{1-\alpha-\beta} \\
\mu^{-1} q^{1-\alpha}
\end{array} \right\rvert\, q ; q^{\alpha+\beta}\right) \\
& =\frac{(\mu q ; q)_{\alpha-1}}{(q ; q)_{\alpha-1}} \frac{1}{(q ; q)_{\alpha+\beta-1}} \sum_{n=0}^{\infty} \frac{\left(q^{1-\alpha} ; q\right)_{n}\left(\mu^{-1} q^{1-\alpha-\beta} ; q\right)_{n}}{(q ; q)_{n}\left(\mu^{-1} q^{1-\alpha} ; q\right)_{n}} q^{(\alpha+\beta) n}
\end{aligned}
$$

[^1]According to (7), the following is valid:

$$
\begin{aligned}
\frac{\left(\mu^{-1} q^{1-\alpha-\beta} ; q\right)_{n}}{\left(\mu^{-1} q^{1-\alpha} ; q\right)_{n}} & =\frac{\left(\mu q^{\alpha+\beta-n} ; q\right)_{n}}{\left(\mu q^{\alpha-n} ; q\right)_{n}} q^{-\beta n}=\frac{\left(\mu q^{\alpha+\beta-n} ; q\right)_{\infty}}{\left(\mu q^{\alpha+\beta} ; q\right)_{\infty}} \frac{\left(\mu q^{\alpha} ; q\right)_{\infty}}{\left(\mu q^{\alpha-n} ; q\right)_{\infty}} q^{-\beta n} \\
& =\frac{\left(\mu q^{\alpha} ; q\right)_{\infty}}{\left(\mu q^{\alpha+\beta} ; q\right)_{\infty}} \frac{\left(\mu q^{\alpha+\beta-n} ; q\right)_{\infty}}{\left(\mu q^{\alpha-n} ; q\right)_{\infty}} q^{-\beta n} \\
& =\frac{\left(\mu q^{\alpha} ; q\right)_{\infty}}{\left(\mu q^{\alpha+\beta} ; q\right)_{\infty}}\left(\mu q^{\alpha+\beta-n} ; q\right)_{-\beta} q^{-\beta n}
\end{aligned}
$$

Hence

$$
S(\alpha, \beta, \mu)=\frac{(\mu q ; q)_{\alpha+\beta-1}}{(q ; q)_{\alpha-1}(q ; q)_{\alpha+\beta-1}} \sum_{n=0}^{\infty} \frac{\left(q^{1-\alpha} ; q\right)_{n}}{(q ; q)_{n}} q^{\alpha n}\left(\mu q^{\alpha+\beta-n} ; q\right)_{-\beta}
$$

If we use formulas (6) and (9), the previous sum becomes

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left(q^{1-\alpha} ; q\right)_{n}}{(q ; q)_{n}} q^{\alpha n}\left(\mu q^{\alpha+\beta-n} ; q\right)_{-\beta} \\
& =\sum_{n=0}^{\infty}\left[\begin{array}{c}
\alpha-1 \\
n
\end{array}\right]_{q}(-1)^{n} q^{-(\alpha-1) n} q^{\binom{n}{2}} q^{\alpha n} \sum_{k=0}^{\infty}(-1)^{k}\left[\begin{array}{c}
-\beta \\
k
\end{array}\right]_{q} q^{\binom{k}{2}}\left(\mu q^{\alpha+\beta-n}\right)^{k} \\
& =\sum_{k=0}^{\infty}(-1)^{k}\left[\begin{array}{c}
-\beta \\
k
\end{array}\right]_{q} q^{\binom{k}{2}}\left(\mu q^{\alpha+\beta}\right)^{k} \sum_{n=0}^{\infty}(-1)^{n}\left[\begin{array}{c}
\alpha-1 \\
n
\end{array}\right]_{q} q^{\binom{n}{2}}\left(q^{1-k}\right)^{n} \\
& =\sum_{k=0}^{\infty}(-1)^{k}\left[\begin{array}{c}
-\beta \\
k
\end{array}\right]_{q} q^{\binom{k}{2}}\left(\mu q^{\alpha+\beta}\right)^{k}\left(q^{1-k} ; q\right)_{\alpha-1}=(q ; q)_{\alpha-1} .
\end{aligned}
$$

This relation is valid since $\left(q^{1-k} ; q\right)_{\alpha-1}=0$ for $k=1,2, \ldots$. Finally, the following identity holds:

$$
S(\alpha, \beta, \mu)=\frac{(\mu q ; q)_{\alpha+\beta-1}}{(q ; q)_{\alpha-1}(q ; q)_{\alpha+\beta-1}}(q ; q)_{\alpha-1}=\frac{(\mu q ; q)_{\alpha+\beta-1}}{(q ; q)_{\alpha+\beta-1}}
$$

4 The fractional q-integral

In all further considerations we assume that the functions are defined in an interval $(0, b) \quad(b>0)$, and $a \in(0, b)$ is an arbitrary fixed point. Also, we presume that the required q-derivatives and q-integrals exist and that the series, mentioned in the proofs, converge.

The next definition gives a generalization of the formula (4).
Definition 1 The fractional q-integral is

$$
\begin{equation*}
\left(I_{q, a}^{\alpha} f\right)(x)=\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} \int_{a}^{x}(q t / x ; q)_{\alpha-1} f(t) d_{q} t \quad\left(\alpha \in \mathbb{R}^{+}\right) \tag{25}
\end{equation*}
$$

Since

$$
\lim _{q / 1} x^{\alpha-1}(q t / x ; q)_{\alpha-1}=(x-t)^{\alpha-1}
$$

the fractional integral (see, for example [10]) occurs as limit case of (25) when $q / 1$.

By using formula (9), the integral (25) can be written as

$$
\left.\left(I_{q, a}^{\alpha} f\right)(x)=\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} \sum_{k=0}^{\infty}(-1)^{k}\left[\begin{array}{c}
\alpha-1 \\
k
\end{array}\right]_{q} q^{(k+1}{ }_{2}\right) x^{-k} \int_{a}^{x} t^{k} f(t) d_{q} t \quad\left(\alpha \in \mathbb{R}^{+}\right)
$$

Putting $\alpha=1$ in the previous relation, we get the q-integral (2).
Lemma 3 For $\alpha \in \mathbb{R}^{+}$, the following is valid:

$$
\left(I_{q, a}^{\alpha} f\right)(x)=\left(I_{q, a}^{\alpha+1} D_{q} f\right)(x)+\frac{f(a)}{\Gamma_{q}(\alpha+1)} x^{\alpha}(a / x ; q)_{\alpha} \quad(0<a<x)
$$

Proof. According to formula (18), the q-derivative over the variable t is

$$
D_{q}\left(x^{\alpha}(t / x ; q)_{\alpha}\right)=-[\alpha]_{q} x^{\alpha-1}(q t / x ; q)_{\alpha-1}
$$

Using the q-integration by parts (22), we obtain

$$
\begin{aligned}
\left(I_{q, a}^{\alpha} f\right)(x) & =-\frac{1}{[\alpha]_{q} \Gamma_{q}(\alpha)} \int_{a}^{x} D_{q}\left(x^{\alpha}(t / x ; q)_{\alpha}\right) f(t) d_{q} t \\
& =\frac{1}{\Gamma_{q}(\alpha+1)}\left(x^{\alpha}(a / x ; q)_{\alpha} f(a)+\int_{a}^{x} x^{\alpha}(q t / x ; q)_{\alpha}\left(D_{q} f\right)(t) d_{q} t\right) \\
& =\left(I_{q, a}^{\alpha+1} D_{q} f\right)(x)+\frac{f(a)}{\Gamma_{q}(\alpha+1)} x^{\alpha}(a / x ; q)_{\alpha} .
\end{aligned}
$$

Lemma 4 For $\alpha, \beta \in \mathbb{R}^{+}$, the following is valid:

$$
\int_{0}^{a}(q t / x ; q)_{\beta-1}\left(I_{q, a}^{\alpha} f\right)(t) d_{q} t=0 \quad(0<a<x)
$$

Proof. Using formulas (3) and (12), for $n \in \mathbb{N}_{0}$, we have

$$
\begin{aligned}
\left(I_{q, a}^{\alpha} f\right)\left(a q^{n}\right) & =\frac{1}{\Gamma_{q}(\alpha)} \int_{a}^{a q^{n}}\left(a q^{n}\right)^{\alpha-1}\left((q u) /\left(a q^{n}\right) ; q\right)_{\alpha-1} f(u) d_{q} u \\
& =\frac{-a^{\alpha}(1-q)}{\Gamma_{q}(\alpha)} \sum_{j=0}^{n-1}\left(q^{n}\right)^{\alpha-1}\left(q^{j+1-n} ; q\right)_{\alpha-1} f\left(a q^{j}\right) q^{j}=0
\end{aligned}
$$

On the other hand, according to the definition of q-integral, we have

$$
\int_{0}^{a}(q t / x ; q)_{\beta-1}\left(I_{q, a}^{\alpha} f\right)(t) d_{q} t=a(1-q) \sum_{n=0}^{\infty}\left(a q^{n+1} / x ; q\right)_{\beta-1}\left(I_{q, a}^{\alpha} f\right)\left(a q^{n}\right) q^{n}
$$

which is equal to zero.

Theorem 5 Let $\alpha, \beta \in \mathbb{R}^{+}$. The q-fractional integration has the following semigroup property:

$$
\left(I_{q, a}^{\beta} I_{q, a}^{\alpha} f\right)(x)=\left(I_{q, a}^{\alpha+\beta} f\right)(x) \quad(0<a<x)
$$

Proof. By previous lemma, we have

$$
\left(I_{q, a}^{\beta} I_{q, a}^{\alpha} f\right)(x)=\frac{x^{\beta-1}}{\Gamma_{q}(\beta)} \int_{0}^{x}(q t / x ; q)_{\beta-1}\left(I_{q, a}^{\alpha} f\right)(t) d_{q} t
$$

i.e.,

$$
\begin{aligned}
\left(I_{q, a}^{\beta} I_{q, a}^{\alpha} f\right)(x) & =\frac{x^{\beta-1}}{\Gamma_{q}(\alpha) \Gamma_{q}(\beta)} \int_{0}^{x}(q t / x ; q)_{\beta-1} t^{\alpha-1} \int_{0}^{t}(q u / t ; q)_{\alpha-1} f(u) d_{q} u \\
& -\frac{x^{\beta-1}}{\Gamma_{q}(\alpha) \Gamma_{q}(\beta)} \int_{0}^{x}(q t / x ; q)_{\beta-1} t^{\alpha-1} \int_{0}^{a}(q u / t ; q)_{\alpha-1} f(u) d_{q} u
\end{aligned}
$$

Due to equality

$$
\left(I_{q, 0}^{\beta} I_{q, 0}^{\alpha} f\right)(x)=\left(I_{q, 0}^{\alpha+\beta} f\right)(x)
$$

proved in [1], we conclude that

$$
\begin{aligned}
\left(I_{q, a}^{\beta} I_{q, a}^{\alpha} f\right)(x) & =\left(I_{q, 0}^{\alpha+\beta} f\right)(x) \\
& -\frac{x^{\beta-1}}{\Gamma_{q}(\alpha) \Gamma_{q}(\beta)} \int_{0}^{x}(q t / x ; q)_{\beta-1} t^{\alpha-1} \int_{0}^{a}(q u / t ; q)_{\alpha-1} f(u) d_{q} u
\end{aligned}
$$

Furthermore, we can write

$$
\begin{aligned}
\left(I_{q, a}^{\beta} I_{q, a}^{\alpha} f\right)(x) & =\left(I_{q, a}^{\alpha+\beta} f\right)(x)+\frac{x^{\alpha+\beta-1}}{\Gamma_{q}(\alpha+\beta)} \int_{0}^{a}(q t / x ; q)_{\alpha+\beta-1} f(t) d_{q} t \\
& -\frac{x^{\beta-1}}{\Gamma_{q}(\alpha) \Gamma_{q}(\beta)} \int_{0}^{x}(q t / x ; q)_{\beta-1} t^{\alpha-1} \int_{0}^{a}(q u / t ; q)_{\alpha-1} f(u) d_{q} u
\end{aligned}
$$

whence

$$
\left(I_{q, a}^{\beta} I_{q, a}^{\alpha} f\right)(x)=\left(I_{q, a}^{\alpha+\beta} f\right)(x)+a(1-q) \sum_{j=0}^{\infty} c_{j} f\left(a q^{j}\right) q^{j}
$$

with

$$
\begin{aligned}
c_{j}= & \frac{x^{\alpha+\beta-1}\left(a q^{j+1} / x ; q\right)_{\alpha+\beta-1}}{\Gamma_{q}(\alpha+\beta)} \\
& \quad-\frac{x^{\alpha+\beta-1}(1-q)}{\Gamma_{q}(\alpha) \Gamma_{q}(\beta)} \sum_{n=0}^{\infty}\left(q^{n+1} ; q\right)_{\beta-1} q^{n(\alpha-1)}\left(a q^{j+1-n} / x ; q\right)_{\alpha-1} q^{n} .
\end{aligned}
$$

Using the formulas (11), (12) and (14), we get

$$
\begin{aligned}
c_{j}=(& (1-q) x)^{\alpha+\beta-1} \\
& \times\left\{\frac{\left(a q^{j+1} / x ; q\right)_{\alpha+\beta-1}}{(q ; q)_{\alpha+\beta-1}}-\sum_{n=0}^{\infty} \frac{\left(q^{n+1} ; q\right)_{\beta-1}}{(q ; q)_{\beta-1}} \frac{\left(a q^{j+1-n} / x ; q\right)_{\alpha-1}}{(q ; q)_{\alpha-1}} q^{n \alpha}\right\} .
\end{aligned}
$$

By substituting $\mu=q^{j} a / x$ in (24), we see that $c_{j}=0$ for all $j \in \mathbb{N}$, which completes the proof.

5 Leibniz-type formula for fractional q-integrals

The q-analog of fractional Leibniz formula for q-integrals

$$
I_{q, 0}^{\alpha}(f(x) g(x))=\sum_{m=0}^{\infty}\left[\begin{array}{c}
-\alpha \tag{26}\\
m
\end{array}\right]_{q}\left(D_{q}^{m} f\right)\left(x q^{-(\alpha+m)}\right)\left(I_{q, 0}^{\alpha+m} g\right)(x)
$$

was proven by W.A. Al-Salam and A. Verma [4]. Notice that it contains only the case $a=0$. Our purpose is to formulate and prove it for arbitrary $a \in \mathbb{R}^{+}$.

Theorem 6 For $\alpha \in \mathbb{R}^{+}$and $0<a<x<b$, the fractional q-Leibniz formula is

$$
I_{q, a}^{\alpha}(f(x) g(x))=\sum_{m=0}^{\infty}\left[\begin{array}{c}
-\alpha \tag{27}\\
m
\end{array}\right]_{q}\left(D_{q}^{m} f\right)\left(x q^{-(\alpha+m)}\right)\left(I_{q, a}^{\alpha+m} g\right)(x)
$$

Proof. By definition of fractional q-integral, we can write

$$
\begin{aligned}
& I_{q, a}^{\alpha}(f(x) g(x))=\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} \int_{a}^{x}(q t / x ; q)_{\alpha-1} f(t) g(t) d_{q} t \\
& =\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)}\left(\int_{0}^{x}(q t / x ; q)_{\alpha-1} f(t) g(t) d_{q} t-\int_{0}^{a}(q t / x ; q)_{\alpha-1} f(t) g(t) d_{q} t\right) \\
& =I_{q, 0}^{\alpha}(f(x) g(x))-\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} \int_{0}^{a}(q t / x ; q)_{\alpha-1} f(t) g(t) d_{q} t
\end{aligned}
$$

Since

$$
\left(I_{q, a}^{\alpha+m} g\right)(x)=\left(I_{q, 0}^{\alpha+m} g\right)(x)-\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} \int_{0}^{a}(q t / x ; q)_{\alpha-1} g(t) d_{q} t
$$

and by (26), we have

$$
I_{q, a}^{\alpha}(f(x) g(x))=\sum_{m=0}^{\infty}\left[\begin{array}{c}
-\alpha \\
m
\end{array}\right]_{q}\left(D_{q}^{m} f\right)\left(x q^{-(\alpha+m)}\right)\left(I_{q, a}^{\alpha+m} g\right)(x)-\Theta(x)
$$

where

$$
\begin{aligned}
\Theta(x)= & \sum_{m=0}^{\infty}\left[\begin{array}{c}
-\alpha \\
m
\end{array}\right]_{q}\left(D_{q}^{m} f\right)\left(x q^{-(\alpha+m)}\right) \frac{x^{\alpha+m-1}}{\Gamma_{q}(\alpha+m)} \int_{0}^{a}(q t / x ; q)_{\alpha+m-1} g(t) d_{q} t \\
& -\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} \int_{0}^{a}(q t / x ; q)_{\alpha-1} f(t) g(t) d_{q} t
\end{aligned}
$$

We can write it in the integral form

$$
\Theta(x)=\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} \int_{0}^{a}(q t / x ; q)_{\alpha-1} g(t) \Psi(t) d_{q} t
$$

where
$\Psi(t)=\sum_{m=0}^{\infty} \frac{(-1)^{m} q^{-\binom{m}{2}-m \alpha}}{[m]_{q}!}\left(D_{q}^{m} f\right)\left(x q^{-(\alpha+m)}\right) \frac{x^{m} \Gamma_{q}(\alpha)(q t / x ; q)_{\alpha+m-1}}{\Gamma_{q}(\alpha+m)(q t / x ; q)_{\alpha-1}}-f(t)$.
Using the properties (6) and (10), we have

$$
\Psi(t)=\sum_{m=0}^{\infty}(-1)^{m} \frac{q^{-\binom{m}{2}-m \alpha}}{[m]_{q}!}\left(D_{q}^{m} f\right)\left(x q^{-(\alpha+m)}\right) x^{m}\left(q^{\alpha} t / x ; q\right)_{m}-f(t) .
$$

This infinite sum is modified q-Taylor expansion (see [4])

$$
\begin{equation*}
f(t)=\sum_{m=0}^{\infty}(-1)^{m} \frac{q^{-\binom{m}{2}-m \alpha}}{[m]_{q}!}\left(D_{q}^{m} f\right)\left(z q^{-m}\right) z^{m}(t / z ; q)_{m} \tag{28}
\end{equation*}
$$

of the function $f(t)$ at the point $z=x q^{-\alpha}$. Hence we conclude that $\Psi(t) \equiv 0$ wherefrom $\Theta(t) \equiv 0$.

6 The fractional q-integrals of some functions

We use the previous results to evaluate the fractional q-integrals of some wellknown functions in the explicit form.

Corollary 7 If $\alpha \in \mathbb{R}^{+}, \lambda \in(-1, \infty)$, then:

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(x^{\lambda}(a / x ; q)_{\lambda}\right)=\frac{\Gamma_{q}(\lambda+1)}{\Gamma_{q}(\alpha+\lambda+1)} x^{\alpha+\lambda}(a / x ; q)_{\alpha+\lambda} \quad(0<a<x) . \tag{29}
\end{equation*}
$$

Proof. For $\lambda \neq 0$, according to the definition (25), we have

$$
\begin{aligned}
& I_{q, a}^{\alpha}\left(x^{\lambda}(a / x ; q)_{\lambda}\right) \\
& \qquad=\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)}\left(\int_{0}^{x}(q t / x ; q)_{\alpha-1} t^{\lambda}(a / t ; q)_{\lambda} d_{q} t-\int_{0}^{a}(q t / x ; q)_{\alpha-1} t^{\lambda}(a / t ; q)_{\lambda} d_{q} t\right) .
\end{aligned}
$$

Also, the following is valid:

$$
\int_{0}^{a}(q t / x ; q)_{\alpha-1} t^{\lambda}(a / t ; q)_{\lambda} d_{q} t=a^{\lambda+1}(1-q) \sum_{k=0}^{\infty}\left(a q^{k+1} / x ; q\right)_{\alpha-1} q^{k \lambda}\left(q^{-k} ; q\right)_{\lambda} q^{k}
$$

It vanishes because of (12). Hence, according to definition (1), we get

$$
\begin{aligned}
\int_{0}^{x}(q t / x ; q)_{\alpha-1} & t^{\lambda}(a / t ; q)_{\lambda} d_{q} t \\
& =x^{\lambda+1}(1-q) \sum_{k=0}^{\infty}\left(q^{1+k} ; q\right)_{\alpha-1}\left(a /\left(x q^{k}\right) ; q\right)_{\lambda} q^{(\lambda+1) k}
\end{aligned}
$$

In view of (23), the previous formula gets the form

$$
\begin{aligned}
\int_{0}^{x}(q t / x ; q)_{\alpha-1} & t^{\lambda}(a / t ; q)_{\lambda} d_{q} t \\
& =(1-q) x^{\lambda+1}(q ; q)_{\alpha-1}(q ; q)_{\lambda} S(\lambda+1, \alpha, a /(q x))
\end{aligned}
$$

By using (24), we get

$$
\int_{0}^{x}(q t / x ; q)_{\alpha-1} t^{\lambda}(a / t ; q)_{\lambda} d_{q} t=(1-q) \frac{(q ; q)_{\alpha-1}(q ; q)_{\lambda}}{(q ; q)_{\alpha+\lambda}} x^{\lambda+1}(a / x ; q)_{\alpha+\lambda}
$$

and applying (14), we obtain the required formula for $I_{q, a}^{\alpha}\left(x^{\lambda}(a / x ; q)_{\lambda}\right)$ when $\lambda \neq 0$.

In case when $\lambda=0$, using q-integration by parts (22), we have

$$
\begin{aligned}
\left(I_{q, a}^{\alpha} \mathbf{1}\right)(x) & =\frac{x^{\alpha-1}}{\Gamma_{q}(\alpha)} \int_{a}^{x}(q t / x ; q)_{\alpha-1} d_{q} t=\frac{1}{\Gamma_{q}(\alpha)} \int_{a}^{x} \frac{D_{q}\left(x^{\alpha}(t / x ; q)_{\alpha}\right)}{-[\alpha]_{q}} d_{q} t \\
& =\frac{-1}{\Gamma_{q}(\alpha+1)} \int_{a}^{x} D_{q}\left(x^{\alpha}(t / x ; q)_{\alpha}\right) d_{q} t=\frac{1}{\Gamma_{q}(\alpha+1)} x^{\alpha}(a / x ; q)_{\alpha}
\end{aligned}
$$

Corollary 8 For $\alpha \in \mathbb{R}^{+}, \lambda \in(-1, \infty), n \in \mathbb{N}_{0}$, and $0<a<x$, the following is valid:

$$
\begin{align*}
I_{q, a}^{\alpha}\left(x^{\lambda}\right) & =\frac{a^{\lambda}}{\Gamma_{q}(\alpha+1)} x^{\alpha}(a / x ; q)_{\alpha}+[\lambda]_{q} I_{q, a}^{\alpha+1}\left(x^{\lambda-1}\right), \\
I_{q, a}^{\alpha}\left(x^{n}\right) & =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{[k]_{q}!a^{n-k}}{\Gamma_{q}(\alpha+k+1)} x^{\alpha+k}(a / x ; q)_{\alpha+k} \tag{30}
\end{align*}
$$

Proof. The first relation follows from the definition of fractional integral and the formula for q-integration by parts (22). Especially, if $\lambda=n \in \mathbb{N}_{0}$, by repeated n times use of previous formula, we get

$$
\begin{aligned}
I_{q, a}^{\alpha}\left(x^{n}\right) & =\frac{a^{n}}{\Gamma_{q}(\alpha+1)} x^{\alpha}(a / x ; q)_{\alpha}+[n]_{q} \frac{a^{n-1}}{\Gamma_{q}(\alpha+2)} x^{\alpha+1}(a / x ; q)_{\alpha+1}+\ldots \\
& +[n]_{q} \cdots[2]_{q} \frac{a^{n-1}}{\Gamma_{q}(\alpha+n)} x^{\alpha+n-1}(a / x ; q)_{\alpha+n-1}+[n]_{q}!\left(I_{q, a}^{\alpha+n} \mathbf{1}\right)(x) .
\end{aligned}
$$

Using formula (29) for $\lambda=0$, i.e,

$$
\left(I_{q, a}^{\alpha+n} \mathbf{1}\right)(x)=\frac{1}{\Gamma_{q}(\alpha+n+1)} x^{\alpha+n}(a / x ; q)_{\alpha+n}
$$

we complete the proof of equality (30).
The formula (30) can be written in the equivalent form

$$
\begin{equation*}
I_{q, a}^{\alpha}\left(x^{n}\right)=(1-q)^{\alpha} \sum_{k=0}^{n} a^{n-k}\left(q^{n-k+1} ; q\right)_{k} \frac{x^{\alpha+k}(a / x ; q)_{\alpha+k}}{(q ; q)_{\alpha+k}} . \tag{31}
\end{equation*}
$$

In q-calculus (see [8]) the following functions are well-known as analogues of the exponential function:

$$
\begin{array}{rll}
e_{q}(x) & =\sum_{n=0}^{\infty} \frac{1}{(q ; q)_{n}} x^{n} & (|x|<1) \\
E_{q}(x) & =\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{(q ; q)_{n}} x^{n}=(-x ; q)_{\infty} & (x \in \mathbb{R}) \tag{33}
\end{array}
$$

Corollary 9 For $\alpha \in \mathbb{R}^{+}$and $0<a<x<1$, the following q-integral is valid:

$$
I_{q, a}^{\alpha}\left(e_{q}(x)\right)=(1-q)^{\alpha} e_{q}(a) \sum_{n=0}^{\infty} \frac{x^{\alpha+n}(a / x ; q)_{\alpha+n}}{(q ; q)_{\alpha+n}}
$$

Proof. According to definition (32) and formula (30), we have

$$
I_{q, a}^{\alpha}\left(e_{q}(x)\right)=\sum_{n=0}^{\infty} \frac{1}{(q ; q)_{n}} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{[k]_{q}!a^{n-k}}{\Gamma_{q}(\alpha+k+1)} x^{\alpha+k}(a / x ; q)_{\alpha+k} .
$$

By appropriate transformation of the sum, it becomes

$$
\begin{aligned}
I_{q, a}^{\alpha}\left(e_{q}(x)\right) & =\sum_{n=0}^{\infty} \sum_{i=n}^{\infty} \frac{a^{i-n}}{(q ; q)_{i-n}} \frac{1}{(1-q)^{n} \Gamma_{q}(\alpha+n+1)} x^{\alpha+n}(a / x ; q)_{\alpha+n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{j=0}^{\infty} \frac{a^{j}}{(q ; q)_{j}}\right) \frac{1}{(1-q)^{n} \Gamma_{q}(\alpha+n+1)} x^{\alpha+n}(a / x ; q)_{\alpha+n} \\
& =e_{q}(a) \sum_{n=0}^{\infty} \frac{1}{(1-q)^{n} \Gamma_{q}(\alpha+n+1)} x^{\alpha+n}(a / x ; q)_{\alpha+n} .
\end{aligned}
$$

In view of (13) and (5), we can write

$$
(1-q)^{n} \Gamma_{q}(\alpha+n+1)=(1-q)^{-\alpha}(q ; q)_{\alpha+n}
$$

which completes the proof.
Corollary 10 For $\alpha \in \mathbb{R}^{+}$and $0<a<x$, the following formula holds:

$$
I_{q, a}^{\alpha}\left(E_{q}(x)\right)=(1-q)^{\alpha} E_{q}(a) \sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{(-a ; q)_{n}} \frac{x^{\alpha+n}(a / x ; q)_{\alpha+n}}{(q ; q)_{\alpha+n}}
$$

Proof. Using definition (33), as in the proof of the previous lemma, we get

$$
\begin{aligned}
I_{q, a}^{\alpha}\left(E_{q}(x)\right) & =\sum_{n=0}^{\infty}\left(\sum_{j=0}^{\infty} \frac{q^{\binom{j+n}{2}} a^{j}}{(q ; q)_{j}}\right) \frac{1}{(1-q)^{n} \Gamma_{q}(\alpha+n+1)} x^{\alpha+n}(a / x ; q)_{\alpha+n} \\
& =(1-q)^{\alpha} \sum_{n=0}^{\infty}\left(\sum_{j=0}^{\infty} \frac{q^{\binom{j}{2}}\left(a q^{n}\right)^{j}}{(q ; q)_{j}}\right) \frac{q^{\binom{n}{2}}}{(q ; q)_{\alpha+n}} x^{\alpha+n}(a / x ; q)_{\alpha+n}
\end{aligned}
$$

Having in mind that

$$
\sum_{j=0}^{\infty} \frac{q^{\left(\frac{y^{j}}{2}\right)}\left(a q^{n}\right)^{j}}{(q ; q)_{j}}=E_{q}\left(a q^{n}\right)=\left(-a q^{n} ; q\right)_{\infty}=\frac{(-a ; q)_{\infty}}{(-a ; q)_{n}}=\frac{E_{q}(a)}{(-a ; q)_{n}}
$$

the statement is proven.
The two previous corollaries give the hint to define (see [12]) the special functions which are q-analogs of Mittag-Lefler function

$$
E_{\beta}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{\Gamma(n+\beta)} \quad(\beta \in \mathbb{C} ; \operatorname{Re}(\beta)>0)
$$

We shall call the function

$$
\begin{gather*}
e_{\beta, q}(x ; c)=\sum_{n=0}^{\infty} \frac{x^{n+\beta-1}(c / x ; q)_{n+\beta-1}}{(q ; q)_{n+\beta-1}} \quad(|c|<|x|) \\
(q, x, c, \beta \in \mathbb{C} ; \operatorname{Re}(\beta)>0, \quad|q|<1) \tag{34}
\end{gather*}
$$

the small q-Mittag-Lefler function.
Similarly, we define the big q-Mittag-Lefler function by

$$
E_{\beta, q}(x ; c)=\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^{n+\beta-1}(c / x ; q)_{n+\beta-1}}{(-c ; q)_{n}(q ; q)_{n+\beta-1}}
$$

under the same conditions (34).
In the limit case, we get

$$
\lim _{c \rightarrow 0} \lim _{q \rightarrow 1} e_{\beta, q}((1-q) x ; c)=\lim _{c \rightarrow 0} \lim _{q \rightarrow 1} E_{\beta, q}((1-q) x ; c)=x^{\beta-1} E_{\beta}(x)
$$

Especially,

$$
e_{1, q}(x ; 0)=e_{q}(x), \quad E_{1, q}(x ; 0)=E_{q}(x)
$$

Now, we can write the conclusions of Corollary 9 and Corollary 10 in the form:

$$
\begin{aligned}
I_{q, a}^{\alpha}\left(e_{q}(x)\right) & =(1-q)^{\alpha} e_{q}(a) e_{q, \alpha+1}(x ; a) \\
I_{q, a}^{\alpha}\left(E_{q}(x)\right) & =(1-q)^{\alpha} E_{q}(a) E_{q, \alpha+1}(x ; a),
\end{aligned}
$$

Acknowledgements

This work was supported by Ministry of Science, Technology and Development of Republic Serbia, through the project No 144023 and No 144013.

References

[1] Agarwal R.P.: Certain fractional q-integrals and q-derivatives, Proc. Camb. Phil. Soc., 66, 365-370 (1969)
[2] Al-Salam W.A.: Some fractional q-integrals and q-derivatives, Proc. Edin. Math. Soc., 15, 135-140 (1966)
[3] Al-Salam W.A.: q-Analogues of Cauchy's Formulas, Proc. Amer. Math. Soc., 17 No. 3, 616-621 (1966)
[4] Al-Salam, W.A., Verma, A.: A fractional Leibniz q-formula, Pacific Journal of Mathematics, 60 No. 2, 1-9 (1975)
[5] Bangerezako, G.: Variational calculus on q-nonuniform lattices, Journal of Mathematical Analysis and Applications, 306 No. 1, 161-179 (2005)
[6] Böing, H., Koepf, W.: Algorithms for q-hypergeometric summation in computer algebra, Journal of Symbolic Computation, 28, 777-799 (1999)
[7] Ding, Y., Shan Zhen Lu, S.Z., and Yabuta, K.: Multilinear Singular and Fractional Integrals, Acta Mathematica Sinica, 22 No 2, 347-356 (2006)
[8] Gasper, G., Rahman. M.: Basic Hypergeometric Series, 2nd ed, Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, Cambridge, 2004
[9] Gorosito O., Pradolini G., Salinas O.: Weighted Weak-type Estimates for Multilinear Commutators of Fractional Integrals on Spaces of Homogeneous Type, Acta Mathematica Sinica, 23 No 10, 1813-1826 (2007)
[10] Podlubny, I.: Fractional Differential Equations (An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications), Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 1999.
[11] Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus, Applicable Analysis and Discrete Mathematics, 1, 311323 (2007)
[12] Rajković, P.M., Marinković, S.D., Stanković, M.S.: On q-analogs of Caputo derivative and Mittag-Leffler function, Fractional calculus and applied analysis, 10 No. 4, 359-374 (2007)
[13] Yao, K., Su, W.Y., Zhou, S.P.: The Fractional Derivatives of a Fractal Function, Acta Mathematica Sinica, 22, No 3, 719-722 (2006)

[^0]: ${ }^{1}$ Corresponding author

[^1]: ${ }^{2}$ For the properties exposed in this lemma, we are thankful to W. Koepf who observed them by his Maple package qsum [6].

