A generalization of the concept
of g—fractional integrals

Predrag M. RAJKOVIC!,
Faculty of Mechanical Engineering, University of Nis,
18000 Nis, Serbia,
E-mail: pedja.rajk@yahoo.com

Sladana D. MARINKOVIC,
Faculty of Electronic Engineering, University of Nis,
18000 Nis, Serbia,
E-mail: sladjana@elfak.ni.ac.yu

Miomir S. STANKOVIC,
Faculty of Occupational Safety, University of Nis,
18000 Nig, Serbia,
E-mail: miomir.stankovic@gmail.com

Abstract In this paper, we consider the fractional g—integral with variable lower
limit of integration. We prove the semigroup property of these integrals, and
a formula of Leibniz type. Finally, we evaluate fractional g—integrals of some
functions. The consideration of g—exponential function in that sense leads to
g—analogs of Mittag—Leffler function.

Keywords Basic hypergeometric functions, g—integral, g—derivative, fractional
integrals, Mittag—Leffler function

MSC classification 33D60, 26A33.

LCorresponding author



Corresponding author:

Predrag M. RAJKOVIC,
Faculty of Mechanical Engineering, University of Nis,
18000 Nis, Serbia, E—mail: pedja.rajk@yahoo.com



1 Introduction

The fractional calculus is a very suitable tool in describing and solving a lot of
problems in sciences, such as physics, electromagnetics, acoustics, viscoelasticity,
electrochemistry and material science (see, for example [10]). Of course, for
mathematics itself it provides new possibilities such as it is emphasized in [7],
[9] and [13]. Their treatment from the point of view of g—calculus can open new
perspectives (for example, see [5]).

We begin by recalling a few basic facts [8]. The g—integral is defined by

(Lo f) (x / Ftdgt =2(1—)S flad)d* (0<lgl<1), (1)

k=0

(Iof) /f dt—/f dt—/f (2)

When the lower limit of integration is a = xz¢™, the g—integral (2) becomes

and

T dt=a(- )Y Fladh)et 3)
k=0

zq™

We define the iterated g-integral operator 1), by

R.f=f  J=IaI3'f) (n=123..).

This can be written in the following form:

x t tn—1 to
I) == / dqt/ dqtn,1/ dqtn,Q . / f(tl) dqtl .
a a a a

The reduction of this iterated g—integral to a single integral was considered by
Al-Salam [3] as a g—analog of Cauchy’s formula

xn—l

)@ = 2 [afmin s de e @)

Al-Salam [2] and Agarwal [1] introduced several types of fractional g—integral
operators and fractional g—derivatives, always with the lower limit of integration
being 0. Here, we will only mention the following ¢g—analog of the Erdélyi-Kober
operator:

2~ (+1)
Ly(a)

However, in some considerations, such as the construction of a ¢—Taylor formula
or solving of g—differential equation of fractional order, it is of interest to allow

(Z7 ) () = / (gt/25q)ar (1) dgt (g0 €RY) .



that the lower limit of integration is nonzero. Therefore, we define the fractional
g—integral by

£L.ozfl

(I(?,af) (z) = m

The relationship between these fractional g—integrals is

(I f) (2) = 2% (T f) () -

The permission for the lower limit of integration to take some nonzero value,
makes fractional g—calculus even more difficult (see [11]).

In this paper, our purpose is to consider fractional g—integrals with the para-
metric lower limit of integration. After preliminaries, we present some properties
of the g—shifted factorials used in the other sections. In the main parts of the
paper, we define the fractional g—integral and the fractional g—derivative and
study their properties. In the final section, we derive the fractional g—integrals
and g—derivatives of some elementary functions.

/w(qt/x;q)aq ft)dgt (e eRT).

2 Preliminaries

In the theory of g—calculus (see [8]), for a real parameter ¢ € RT \ {1}, we
introduce a g-real number [a], and g—shifted factorial by

k—1
1—q® )
= ; = 1—aq’ R .
lde == (@ g( ag')  (a€R, k€ NU{oo})
Its natural extension to the reals is
(a3 @)oo
a;q)og = ———— aeR). 5
(@) = (e (aeR) 6
Also, the g—binomial coefficient is given by
« (% k ak —(%)
== 127 (1 2 keN, aeR). 6
The following formulas (see, for example, [8] and [4]) will be useful:
(@)n = (¢""/mq), ()" p" g3, (7)
(g™ @)n (a/1;,0)n (1"
= —_ s 8
(Vg q)n (a/via)n (V) ®)
oo o .
e = S |7] aDr, )
n=0 q
(1 Datn = (14%0)n (1590 (10)
k. .,
(hg” Qo (Hg™ @)k (11)
(15 @)a (1 @)
(@ @a = 0 (nkeN, n>k pv,a€R). (12)



The g—gamma function is defined by
Ly(x) = (qx’_ﬁ (1—q)t" (xeR\{0,-1,-2,...}), (13)
(4% 9)c
and obviously,
@+ 1) = [l To(@),  Ty@) = @@es(l—)'".  (14)
The g-hypergeometric function [8] is defined as
a, b‘ — (@50,
q; T ) = .
Q(bl( ¢ ) nz:% (€ Dn (@ 0)n
The Heine transformation formula is:
a, b\ (abx/c;q)o c/a, c/b|
201(“ 7| ga) = S v 2607 7| grabafe) . (15)
The g—derivative of a function f(z) is defined by
f(x) — flqz)

T —qr

(Do) = (2 £0), (Df)(0) = lm (D)) ,

and the g—derivatives of higher order as follows:
D)f=f, Dl'f=Dg(D}7'f) (n=1,2,3,...). (16)

For an arbitrary pair of functions u(z) and wv(z) and constants a, 8 € R, we
have linearity and product rules, as

Dy(c u(z) + B v(z)) = a(Dqu) (z) + B(Dgv) (z),
Dy(u(z) - v(z)) = u(qz)(Dgv) (x) + v(z) (Dgu) () .

In this paper, the g—derivatives of the next functions are very useful examples:

Dy(aMafz:9)r) = Mgz (a/zig)a-1 (17)
Dq(aA(x/QEQ)A) = *[Mqa/\il(qx/aﬂ))\—l ) (18)
Dy(z?) = [Agz* . (19)

For the g—integral and g—derivative operators the following relations are
valid:

(D17 . f)(x) = f(z) (neN), (20)
n—1 k a
(.009)@) = 1)~ 3 CaD sty ery.
k=0 a

The formula for g—integration by parts is

/ u(x)(Dgv) (x) dgw = [u(x)v(x)]z —/ v(gz)(Dqu) (x) dgw . (22)



3 Some useful properties of ¢—shifted factorials

The following result will be used in proving the semigroup property of the
fractional g—integral.
Let us denote

o0

7q a—1 (q1+n;Q)5—1 an
S(a, B, 1) " (23
Z (@) a1 (¢5q) -1 )

Lemma 1 For pi, o, 3 € Rt the following recurrence relations are valid 2:

(1= ¢*"PNS(a, Bp) — (1 — pg® P )S(@—1,8,0) = 0
(1—q*"NS(a, Bp) — (1 — pg® ™ )S(e, B~ 1,0) = 0
q(1— g1 S(a, B, 1) + (1 — q)(1 — pq) Dy S(e, Bop) = 0.

Lemma 2 For u,a, 3 € RT, the following identity holds:

(g5 Qarp1
Slen ) = (¢ Qarp1 29

Proof. According to formulas (5) and (8), we have

—— (e " @)oo _ (10" @)n (143 @)oo
’ (™™ @) (4™ @)n (1G5 Q)0
(/“Lil;Q)n q(lfa)n )

(= tgt=q)n

= (Uq; @)a—1

1+n

By applying identity (11) to the expression (g q)3-1/(¢; q)p—1, we can write

S(a, B, 1) in the form

(14 Da-1 x= (@5 D)n (W hn oo
S(e, B, 1) = g ngem
( ) (¢ @)a—1 nz::o (@D (W' % q)n
_ (Mg @)a— (u‘l, q¢° v q)
(4 9)a—1 ptgtme

By using (15), we get

atp. 1— —1 1—a-p3

_ (g @)a—1 (@°771q) ¢ plq o
Sl = D @O 2¢1< plgl-e ©4 +ﬁ)

_ (Mg Qe 1 o~ (@) (W' P 9)n glotom
(q;(I)a71 (q;Q)a+ﬁ71 0 ( q;49 )n (/J' ql aaQ)n

n=

2For the properties exposed in this lemma, we are thankful to W. Koepf who observed
them by his Maple package qsum [6].



According to (7), the following is valid:

P q =
(= tgt=q)n (Mg~ q)n (g*tB: @) e (GO q) o0

I ) O T ) P
T e ()
(19" 9)
(1P 9)so (kg

P ) P O g (TP e (045 @)oo e

a+pB—n Bn

Q) -5 4

Hence

l1—a.

N _ (g @arsr (@ NDn
B = G et @ arss nZ:O (4 9)n

a+B-—mn,
bl

q*" (ugq q)-p -

If we use formulas (6) and (9), the previous sum becomes
© 1-a.

ZO (q ) q)n

(¢ Dn

a+B-mn.
b

(g q)-p

n

o0

k=0
This relation is valid since (qlfk
following identity holds:

;q)w_1 =0 for kK = 1,2,... . Finally, the

(195 Q)atp—1 O
(€3 @) at8-1

(15 Qo p—1
S f— . oa— p—
(.8, 1) (;@)a—1 (€ Q)atp-1 (45 @)ar

4  The fractional ¢—integral

In all further considerations we assume that the functions are defined in an
interval (0,b) (b > 0), and @ € (0,b) is an arbitrary fixed point. Also, we
presume that the required g—derivatives and g—integrals exist and that the series,
mentioned in the proofs, converge.

The next definition gives a generalization of the formula (4).

Definition 1 The fractional g—integral is

a—1

(18, f) (@) = =

o / Qe O dt (@ €RY) . (25)



Since

li a—1 . = _ pa—1
ql/‘Hil‘ (qt/z;9)a-1 = (x —t)

the fractional integral (see, for example [10]) occurs as limit case of (25) when

q /1L

By using formula (9), the integral (25) can be written as

o0

Z {a— 1} q(kgl)x’k /I 0] dt (aeR*).

=0 a

ai

(15.9)(

Putting o = 1 in the previous relation, we get the g—integral (2).

Lemma 3 For a € R, the following is valid:

(Igaf) (@) = (Iga' Dy f) (@) + I%xa(a/x;q)a 0<a<uz).

Proof. According to formula (18), the g—derivative over the variable ¢ is

Dy (2°(t/2;9)a) = —[a]qz®(gt/259)a
Using the g-integration by parts (22), we obtain

_W‘lq(a)/w Dg (2™ (t/z;q)a) f(t)dqt

— Fq(;m (ma(a/x; 7)o f(a) + /: 2¥(qt/z;q)a(Dyf) (t)dqt)

f(a)
Ly(a+1)

(Igaf)(x) =
= (13" Daf) (@) + 2%(a/23q)a - O
Lemma 4 For o, 3 € R, the following is valid:

[ s () 0de =0 ©<a<a).

Proof. Using formulas (3) and (12), for n € Ny, we have

(L(z)jaf) (Clq") = Fq}a) /aq (aqn)ozfl((qu)/(aqn);q)ailf(u)dqu
= _a;(:(la_ q i n J+1 n, q)a—lf(aqj)qj —0.

On the other hand, according to the definition of g—integral, we have

oo

/Oa(qt/x; D1 (I8 F) (Ddgt = a(l = q) > (aq" " fa;9) g1 (I 0 f) (ag™)q"

n=0

which is equal to zero. [



Theorem 5 Let a,3 € RT. The g—fractional integration has the following
semigroup property:

(I’g I f)(:r):(fgjgﬁ ) () 0<a<ux).

a,a"q.a
Proof. By previous lemma, we have

s Y
(ulzal) @) = o [t/ (D) Ot
xﬁfl xT o t .
(ulial) @) = F o505 /0 (qt/z: )51 t° /0 (@u/t: Qo f(u)dgu

xﬁ—l /m a
- [ @m0 [/t ges fdge
T, ()T, (3) Jo W det 0 ) L
Due to equality
(Loolgof) @) = (1557 F) (@) .
proved in [1], we conclude that
(I algal) (@) = (1557 1) ()
xf—1

_W/o (qt/x:q)5-1 t“”A (qu/t; @)a—1 f(u)dgu .

Furthermore, we can write
xoz—&-ﬁ—l

(If,afé’,af) (z) = (Iéfﬁf) (z) + W/o (qt/7;q)arp—1f(t)dgt
2Pl

- ’ €T 1 a—1 ¢ w/t: L fu U
Fq(a)Fq(ﬁ)/o (qt/ ,Q)ﬁ* 3 /0 (q /t’Q)a f( )dq ,

whence -
(17 15 f) (@) = (1832 ) (@) + a1 = q) Y ¢ flag))e,
j=0
with
o 2P agI™ /25 q) s g1
! Fq(a + ﬂ)
$a+ﬁfl(1 _ q) oo _
Y (" )1 TV (a2 q) e ¢
Ty ()T (B) 2 ’ «

n=0

Using the formulas (11), (12) and (14), we get
+8-1
¢ = ((1—qa)*"”

y {(aqj+1/$ZQ)a+Bl _i (@5 9)p1 (a7 /x5q)a qna} .

(& Datp-1 (;0)p-1 (45 @)a—1

n=0

By substituting 1 = ¢’a/z in (24), we see that ¢; = 0 for all j € N, which
completes the proof. [



5 Leibniz—type formula for fractional
g—integrals

The g—analog of fractional Leibniz formula for g—integrals

o0

(@) o) = 3 2] o) ) r35ma) @) o)

m=0

was proven by W.A. Al-Salam and A. Verma [4]. Notice that it contains only
the case a = 0. Our purpose is to formulate and prove it for arbitrary a € R™.

Theorem 6 For o € RT and 0 < a < z < b, the fractional q—Leibniz formula
18
oo

0@ 9@) = Y- [ () e ) @) @)

m=0
Proof. By definition of fractional g—integral, we can write
a—1

I7,(f(@) g()) = &

q(@)

- Fq(a)(/o (at/;q)a—1f(t)g(t) dgt —/O (qt/x;qQ)a 1 f(t)g(t) dqt)

/E(qt/w; Q)a—1f()g(t) dgt

a—1

: a /Oa(qt/x?q)a—lf(t)g(t) dgt .

a—1

Ly(a)

(13m9)@) = (1559w - = [ (@2 Dar 9() dyt,
0

and by (26), we have

I7al > [ } (D7 f) (wa™ ™) (1737 9) (2) = O(a),
=0
where
O(x) = i [—a} (Dmf) (Iq_(a+m))ng5-m—1/a(qt/m.q) em1g(t) dgt
= Llm], Ly(a+m) Jo jamm q

a—1

_ Fq(a)/o (gt/m;q)a—1f(t)g(t) dgt .

We can write it in the integral form

0) = o | @t/ g0 dyt.

10



where

= N (_1)mq7(rzn)7ma m T —(a+m) xmrq(a)(qt/:QQ)oH»mfl .
77712;0 [m]q! (D7) (g )Fq(a+m)(qt/x;q)a_1 J(0)-

Using the properties (6) and (10), we have

m
() -ma

(D ) (2g™ ) 2™ (gt /w5 ) — F(E).

This infinite sum is modified ¢-Taylor expansion (see [4])

m
)7ma

0o (2
=S (L

[m],!

(Dg"f) (za™™) 2™ (t/ 2 @)m (28)

~

of the function
wherefrom O(t)

(t) at the point z = zq~®. Hence we conclude that ¥(t) =0
a

Il
e

6 The fractional ¢g—integrals of some functions

We use the previous results to evaluate the fractional g—integrals of some well-
known functions in the explicit form.

Corollary 7 If a € RT, X\ € (—1,00), then:

19, (2 (a/z;9)5) = m 22 MNaj/z;Q)arn (0<a<z). (29)

Proof. For X\ # 0, according to the definition (25), we have
I(l]x,a ((E)\(CL/;E; Q))\)

a—1 a

Y (/0 (qt/ﬁ‘I)a—ltA(a/t%fl)Adqt*/O (at/; @)1t (/85 @)rdt ).

Also, the following is valid:

a o0
| @t 00s e/t ndyt = (1-0) Y (00" i )acs ¢ 0
0 k=0

It vanishes because of (12). Hence, according to definition (1), we get

/0 (a5 Qact M0/t ) dgt

:x’\“ Z 1+k Ja1 a/(xq ); q)/\ q(x\+1)k
k=0

11



In view of (23), the previous formula gets the form

[ t/s00as Paftias ae
=(1—¢q) 2™ (:9)a-1 (g 9)x S(A+ 1,a,a/(qx)) .

By using (24), we get

/ (a5 )o@t ndgt = (1 — q) LD UBDY ain iy
0 (@ @ atr

and applying (14), we obtain the required formula for I, (xk(a/a:; q)A) when
A #0.

In case when A = 0, using g—integration by parts (22), we have
ot 1 /x Dg(2®(t/;9)a)

T,y(a) / e S “lal,

—1 T . . - 1 X |
= W/a Dq(l' (t/J?,Q)a)dqt = mx (a/x,q)a . O

(Lga1)(z) = dgt

Corollary 8 Fora € RY, A € (=1,00), n € Ny, and 0 < a < z, the following
s valid:

a)\
Ta@®) = gy = @/ @a + LI (7
@ ny __ & n [k]q' an—k a+kK .
Gale") = kzzo [kLFq(a TktD) " /5 D (30)

Proof. The first relation follows from the definition of fractional integral and the
formula for g—integration by parts (22). Especially, if A = n € Ny, by repeated
n times use of previous formula, we get

n n—1

2% (a/x; q)a + [nlqm

Q;O‘—Hl_l(a/x; q)oﬁtn*l + [n}q'(lg‘inl) (l‘) .

a

- 2 a/x;Qag1 + - .-

Iga(a") =

n—1

S QTR e

Using formula (29) for A = 0, i.e,
1

IaJrnl — a+n . otn
(q,a )((E) Fq(a+n—|—1)x (a/xaQ) +n

we complete the proof of equality (30). O
The formula (30) can be written in the equivalent form

- - - anrk(a/x' Dotk
Iaa ") = (1 — q a a” k qn k+1;q A ) ) 31
rale") = (=0 ,;) ( ) (¢ @)atk (B

12



In g—calculus (see [8]) the following functions are well-known as analogues
of the exponential function:

ele) = S ——an (2] < 1) , (32)

3

I

o
—~
R
&)

V3

s

S

I

[z |
(=}

@ " = (—2;q) (zeR). (33)

Corollary 9 For a € RT and 0 < a < x < 1, the following q—integral is valid:

o
S
=

n

Il
=)

n

a (o (1)) = —a) e.(a - ‘raJrn(a/x;q)aJrn
Iq,a( q( )) (1 Q) q( ); (q;q)a-l-n .

Proof. According to definition (32) and formula (30), we have

« . . 1 - n [k]q' anik o .
faaleala)) = 7;) (4 9)n ,; {k] Jala+k+1) #H /T et

By appropriate transformation of the sum, it becomes

o B aifn 1 oin .
Igaea(®) = ,;i:n (¢:9)i—n (1—q@)"Ty(a+n+1) " (/2 actn
oo e o 1 . .
- ;(; (Q;Q)j> (1—qTy(atn+1) " (0% @)actn
=eqa) ) . 2T (a/T; q)atn -

— (1—g)"T'y(a+n+1)
In view of (13) and (5), we can write

(1=q)"Tyla+n+1) =1 -9 (¢ Datn ,
which completes the proof. (I

Corollary 10 For o € R* and 0 < a < z, the following formula holds:

zotn (a/%; @) atn
<Q§ Q)a+n

=)
Fa(Bala)) = (1= o) 3 s
n=0 A

Proof. Using definition (33), as in the proof of the previous lemma, we get

0o 00 (Jt")aj
I‘?»a(Eq(x)) = <Z q( . . ) (1 _ C])nrq](.()é—Fn—ﬁ- 1) xa+n(a/x;Q)a+n

n=0 \j=0 q7q)]
= (& ¢8) (agn)i (3)
=(1-9)° g q q " (a/x; .
=(1-q n_()(;) @) >(q;q)a+n (a/7;q)an

13



Having in mind that

i s = E,(aq")

_on, _ a _
=0 q:9 e (7aaQ)n (7a;q)n ’

I
—~
=)
(S
)
~—
|

the statement is proven. [

The two previous corollaries give the hint to define (see [12]) the special
functions which are g—analogs of Mittag—Lefler function

x):;m (B €C; Re(B) >0) .

‘We shall call the function

— 2"t~ C/x Q)n-i-ﬁ 1
es,q(x; ) cl < |z|),
B.q( Eﬁ @ Omens (el < |z)
(¢, z,¢,8 € C; Re(B) >0, |q <1) (34)

the small g—Mittag—Lefler function.
Similarly, we define the big q—Mittag—Lefler function by

Eﬁ (Jj c) = i q(2')xn+ﬁ—l(c/x; Q)n+6—1
* = (=6 (G Dnts

under the same conditions (34).
In the limit case, we get

lim hm ep,q((1 — q)z;c) = lim hm Epgq((1 = q)z;c) = P E(x) .

c—0q— c—0g—1
Especially,
e1,4(2;0) = eqx),  Eig(2;0) = Ey(z) -
Now, we can write the conclusions of Corollary 9 and Corollary 10 in the form:

I?,a (eq(x)) = (1 - q)a eq(a) 6q,a+l(x§a)
I3 (Eq(z)) = (1 = ) E4(a) Egatr(z;a),
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